
1 Transaction Monitoring Under the Hood
Copyright © 2003, Ed Levy. All rights reserved.

In this article, we will briefly explore the inner
workings of some of the more advanced software
approaches used by transaction monitoring
systems to detect money laundering. If you
are in the market for one of these sophisticated,
expensive systems, it is important to have some
understanding of the underlying technology, if
for no other reason than to get past the tag-lines.

For example, you will hear that neural
networks are black boxes that don’t give the user
any understanding of why they are singling out a
transaction as suspicious. In fact, the offerings of
the market-leading vendors of all of the advanced
transaction monitors have engineered their systems
to address the limitations of simplistic academic
implementations, such as the black box limitation
of a simple neural network. In order to evaluate
an offering, it is necessary to understand how the
system implements the technology it uses and how
the implemented system works in the real world.
No system can be judged superior simply on the
basis of whether it calls its technology decision tree,
neural network, or statistical profiling. Still, if you

decide to use transaction monitoring software, the
technological approach the software uses to detect
money laundering is a factor you should take into
consideration when choosing which system to use.

An effective anti-money laundering strategy is
comprised of policies to satisfy “Know Your Customer”
and Enhanced Due Diligence requirements, training
and awareness programs, and reporting and record-
keeping procedures. Software systems should be seen
as one tool to use as part of this comprehensive strategy.

Software vendors offer systems that check
potential clients and counter-parties against lists
of known prohibited and high-risk individuals
and entities (e.g., lists such as the OFAC list and
databases of Politically Exposed Persons). Other
vendors offer systems that check against rules
that are packaged with the system; most of these
allow you to customize rules for your institution.
The vendors that offer the transaction monitoring
approaches based on decision trees, neural networks,
and statistical profiling incorporate list checking
and rule processing, but they go even further than
that. Whether or not the advanced technological
approaches offered by these vendors are appropriate
for your institution is a question you need to address as
a part of your overall anti-money laundering strategy.

This article discusses decision trees and neural
networks, two of the techniques used in what
is sometimes called data mining or knowledge
discovery. It also discusses statistical profiling. The
vendors that use these approaches claim that their

Transaction Monitoring Under The Hood:
Decision Trees, Neural Networks, and Statistical Profiling

by Ed Levy, J.D.

Ed Levy, J.D., is a member of the ACAMS
Technology Task Force. He is a Business Analyst,
System Architect, Data Modeler, and Project
Manager working in the anti-money laundering
area. For questions or comments, email
edlevy@impactaml.com.

2 Transaction Monitoring Under the Hood

software can discover new methods of money
laundering on their own, even when rules that
identify those cases haven’t specifically been
programmed into them. I hardly blame you if
you’re skeptical, but this article should give you
some sense of how this might be possible.

The utility of these sophisticated approaches
lies at least as much in their day-to-day role in
detecting existing patterns of money laundering
as in their detection of new patterns. If computers
are able to recognize all the known patterns,
without detectiing new ones, they can still compare
transactions as they happen with a wealth of
historical data and analyze the patterns in near-real
time, in a way that would be completely beyond
human capacity. We are focusing on learning new
patterns because it will allow you to understand both
how these systems learn new patterns and how they
detect existing patterns. The first two approaches
we’ll discuss, decision trees and neural networks,
are derived from the field of machine learning.

Can machines learn? Deep Blue, the computer
that beat Kasparov at a regulation chess match
in 1997, is one example that made the headlines.
Computers have been built that have learned
to analyze astronomical phenomena, to predict
recovery rates in pneumonia patients, to perform
insurance risk-management analysis, and even
to use vision sensors to drive vehicles on public
highways at up to 70 miles per hour (hopefully
not while I’m on the road). One of the areas in
which machine learning approaches have been
applied very successfully is the detection of credit
card fraud. A number of the companies that are
now using machine learning to detect money
laundering started by using it for fraud detection.

Since decision trees and neural networks as they
are applied to the detection of money laundering
are operating in the same domain, they face similar
problems, including issues surrounding selection of
independent variables, training, sample selection,
overfitting, and noisy data. In many ways, they
are more alike than they are different. Although
statistical profiling is not strictly a machine
learning approach, in the field of money laundering

Machine Learning
 versus

Artificial Intelligence

So much emotionally charged controversy
has surrounded the field of Artificial Intelligence
that it has been divided into two branches: strong
AI and weak AI.

Believers in strong AI claim that a
computer could be built that would think at (or
even beyond) the level of humans and maybe even
be conscious of itself, as HAL was in the movie
2001. (”I’m sorry, Dave. I can’t let you do that”.)

In 1950, Alan Turing proposed the Turing
Test, related to strong AI. His operational
definition of artificial intelligence was the ability
of a computer to achieve a level of performance in
all cognitive tasks such that it could fool a human
investigator communicating with it by teletype
into thinking that it was human. To pass this
test, a computer would need all of the following
abilities: the ability to process natural language, the
ability to represent knowledge so that it could store
information given to it during the investigation, the
ability to reason so that it could answer questions
and draw new conclusions based on information
given to it by the investigator, and the ability to learn.

Note that the Artificial Intelligence abilities
that a computer needs to be useful in detecting
money laundering are much more limited than
those required to pass the Turing Test. It will
be acceptable to most of us for the computer
to report suspicious transactions in a form that
does not require it to have a conversation with us
that would fool us into thinking it was a person!

Believers in weak AI claim that computers
can be built with thinking-like abilities. This
is the kind of artificial intelligence we are
concerned with: the ability of the computer to
adapt to new circumstances and to detect and
extrapolate patterns, that is, to learn. The claims
of believers in weak AI that computers can learn
in this sense have already been proven correct.

Transaction Monitoring Under the Hood 3

(continued on page 4)

detection, it too faces most of the same problems.
The general framework for the understanding

of machine learning approaches immediately
following this section lays out the issues.
Separate sections on decision trees, neural
networks, and statistical profiling will outline
how each of these approaches handle the issues.

A General Framework for
Understanding Machine Learning
Approaches

Specification of a Well-Defined Learning
Problem

We will define learning as improvement of
performance with experience, or, more formally:

Learning: A software system learns from
experience if it is able to improve its performance
on a task with experience in performing the task,
without outside intervention.

In the example of the car that learned to drive on
the highway by itself, the steering system and vision
sensors of the car started out knowing nothing.
Through exposure to a variety of driving scenarios
represented by visual stimuli and feedback on
the correct actions to take given those scenarios,
the system eventually trained itself to steer so
that it could successfully drive on the highway.

An anti-money laundering learning task could
be expressed in this framework as follows:

Task: Recognizing cases of money laundering;
Performance: Percentage of successfully
classified cases; and
Experience: Exposure to a set of cases with
the cases that constitute money laundering pre-
identified.

The idea is that having learned how to classify
the pre-identified cases, the software system can
correctly classify not only cases that are identical
to those it has been exposed to, but also cases
that are different. A key point is that the software

system is not simply memorizing the specific cases
that it has been presented. Rather, it is developing
a method by which to classify future cases.

Before going further, we’ll refine the
specification of the task. A correct task
specification is one of the keys to successful
machine learning. It’s unrealistic to expect that
the computer is going to definitively recognize
cases of money laundering. There are too many
factors that could never be included in the data to
make a definitive identification. Instead, we could
define the task as identifying cases in which a
Suspicious Activity Report (SAR) should be filed.
Even this is too ambitious. We can’t expect to have
so much confidence in our program that we will
allow it to automatically file a SAR without human
intervention. A more realistic goal is recognizing
cases in which an expert would say that the
institution’s policy would require that someone
should investigate whether a SAR should be filed.
(In fact, many of the software systems reverse
their viewpoint on the problem and, rather than
learning to recognize the case of suspected money
laundering, they learn to recognize normal patterns
of activity; then they report on departures from those
normal patterns. We will discuss the advantages of
this after illustrating how decision trees and neural
networks solve the learning problem.) Meanwhile,
our new specification of the Task is to recognize
whether a transaction should be investigated.

We will consider a number of important
issues involved in building software that
could successfully learn the task. The first
set of issues involves the organization of the
experience that the software will train itself on.

First Ever CAMS Certification Exam!
*Deadline to Apply is February 12th

Miami Beach, Florida
March 26, 2003

4 Transaction Monitoring Under the Hood

Design of The Training Experience: Variables,
Data Items, and Choice of Sample Data

The organization of the training experience
involves the choice of the data that will be available
to the software. The choice of which data items to
include in the training experience is perhaps the
most important choice of all. The data items that are
chosen as predictors in the training experience can
be called the independent variables; the predicted
classification can be called the dependent variable.
In our examples, Investigate? will be the dependent
variable. We will call Investigate? = Yes a positive
result and Investigate? = No a negative result.

The term “predict” may seem odd in this
context. It is generally used in discussing the
application of machine learning techniques to
time-series data. The idea is that we are trying

to predict a future outcome, such as, whether a
patient will later recover from pneumonia, or, in
our example, whether a transaction would later
be classified as Investigate? = Yes by an expert.

If the independent data items we choose
for analysis are not sufficiently related to the
dependent classification variable, the software has
no chance of being able to learn to successfully
classify any cases beyond those presented in
the training experience. Taking an extremely
obvious example, if the only data items we
included as independent variables in the training
data were name, address, date of deposit, and
account type, the program would be unable to
generalize beyond the training experience. Some
of the data items that might be used as indpendent
variables are shown in the shaded box below.

One strength of machine learning is that if you

Selection of Data Items to Use as Indpendent Variables is Critical

A few of the independent variables related to the account would be:
 • Account Type (personal vs. corporate, savings vs. checking, type of checking or savings);
 • Account Holder Entity Type (individual personal account vs. joint personal account vs.
 business, and type of business);
• Account relationships with other accounts;
• Stated expectations of account usage;
• Account location, with risk rating of geographical region of account holder and related accounts
 including habitual counter-parties;
• Periodic and current account balances.

A few of the independent variables related to individual transactions would be:
• Transaction Date, Time, and Amount;
• Transaction Type (deposit vs. withdrawal, monetary vs. non-monetary, teller vs. non-teller,
 purchase or deposit of negotiable instrument with instrument type, wire transfer with to and
 from locations);
• Comparison with frequency and volume of transaction types over specified periods (days,
 months, years);
• Calculated comparisons to normal transactions;
• Calculated comparison to normal and current account balances;
• Words used in comments or description fields, sometimes given a risk rating.
In addition to using these and other independent variables relative to accounts and transactions

at the individual account level, most of the systems would also compare transactions made by peer
groups of similar accounts.

Transaction Monitoring Under the Hood 5

include a large number of independent variables
some of which may have no relationship to the
dependent variable and others of which have
complex relationships to the dependent variable,
machine learning approaches can learn to predict
the correct classification based on complex
relationships that might not be obvious to people.

The selection of data items to include is one
of the areas in which domain expertise comes
into play. Domain experts can examine the data
items selected to at least make sure that nothing
they think might be relevant is left out. In the real
world, data for money laundering software comes
from multiple sources. The issues surrounding
what data items are selected, and the formats and
timeframes in which they are made available to the
software are critical both in the system’s knowledge
discovery capacity and its ongoing operational
detection of money laundering transactions in
production. The issues involved in making the
data formats consistent and providing things like
universal account and transaction numbers that will
be unique across all the systems are the same issues
that would be involved in a data warehouse project.

The sample data items that we’ll use in
our examples are in the shaded box below.

It’s important to avoid choosing independent
variables that have a direct but non-predictive

relationship to the dependent variable. Taking an
extreme example, if we made universal, unique
transaction identification number an independent
variable, the computer could easily develop an
algorithm to correctly predict all the outcomes for
the cases in the training data set, but it would have
no ability to predict any outcomes for cases not in
the training data set. Much less obvious examples
of this occur frequently when choosing variables
from production data, since the meaning of a data
item is not always clear. One symptom of this
kind of problem is results that are too good on the
training data set but poor on any other set of data.

We’ve chosen these four calculated variables
so that our examples can have some meaning with
just a few variables. In a real-life situation it is
highly advisable to insure access to data at the most
granular level possible (as in any data warehouse
project). Data can always be summarized;
summarized data generally can’t be decomposed
back into its more granular form, and that granular
form might be desirable at some point, either
on its own or to perform a different summary.

In addition to the choice of data items, the design
of the training data set also involves the choice of
sample cases. We are all familiar with the notion of
random sampling. In this case, random sampling is
generally not appropriate. A random sample would

Independent Variables for Use in Examples

We’ll use a sample training data set with just 4 independent variables for purposes of illustration
in this article. Variable names will appear in the font shown below. The variables we chose are:

• Geo Risk, which will be a Risk Rating of the Country of the Account Holder;
• Trans Amt/Bal, will be based on the Transaction Amount relative to Average Individual
 Account Balance over the last six months;
• Relative Peer Trans Amt/Bal, which will be based on the (Transaction Amount) relative to
 (Average Individual Account Balance over the last six months) compared to an analogous
 Peer Group measure of (Average Transaction Amount for this month for the Peer Group)
 relative to (Average Account Balance over the last six months for the Peer Group); and
• Relative Peer Trans Freq, which will be based on the (Transaction Frequency for the past
 30 days of the Account that made the Transaction) relative to the (Transaction Frequency for
 the past 30 days of the Accounts in the Peer group).

6 Transaction Monitoring Under the Hood

show an overwhelming majority of negatives
(Investigate? = No) and very few positives. In a data
set where Investigate = No was the outcome 97%
of the time, any methodology would achieve 97%
accuracy merely by predicting that Investigate? is
always No. In order to learn to identify the positives,
the training data set will very likely have to contain
a higher proportion of positives than we would find
in a random sample. (Even if the software was
taking the opposite approach of identifying the
normal transactions and reporting on exceptions,
the sample would have to be skewed towards
exceptions in order to learn to distinguish normal
from abnormal, unless it purely took the approach
of reporting all departures from normality.)

Search Space and Valid Hypothesis Space

In computer science, developing an algorithm
for predicting a result is often viewed as a search
through a set of hypotheses to find the hypothesis that
most accurately predicts the result. We will adopt
the following restricted definition of Hypothesis:

Hypothesis: A statement or set of statements
that predicts one or more dependent variables
based on the values of a set of independent
variables.

We will enclose hypohtheses in curly braces
to set them off, for example: {If Geo Risk = High,
Investigate = Yes}.

We will define a Case as follows:

Case: Given a set of independent variables, a
case is a particular set of values for each of the
independent variables. For example, taking Geo

Risk, Trans Amt/Bal, Relative Peer Trans Amt/Bal, and
Relative Peer Trans Freq as the set of independent
variables, (Geo Risk=High, Trans Amt/Bal=Normal,
Relative Peer Trans Amt/Bal=Low, and Relative Peer
Trans Freq=Normal) would be a case. Case is
synonymous with the mathematical term, vector.

The total set of hypotheses is called the
Search Space, which we will define as follows:

Search Space: The complete set of possible
hypotheses that can be constructed to predict
a dependent variable for the set of all possible
cases, given a set of independent variables.

 Within the total set of hypotheses, and
also within the set of hypotheses for a particular
search algorithm, there will generally be more
than one hypothesis that predicts the outcomes
in the data with equal degrees of success. For
the purposes of this article, we’ll define this set
of hypotheses as the Valid Hypothesis Space:

Valid Hypothesis Space: The set of hypotheses
in the search space in which all the hypotheses
that are members of the set are consistent with
a given set of cases to a degree greater than or
equal to a specified level of accuracy.

In the decision tree section of this article, the
four independent variables described above will be
coded as having 2 values for Geo Risk and 3 each
for Trans Amt/Bal, Relative Peer Trans Amt/Bal, and
Relative Peer Frequency. Table 1 shows an example
training data set consisting of only four cases.

Based on this very small set of cases, the
Valid Hypothesis Space would be very large. One
valid hypothesis would be: {If any value is High,

Geo Risk Trans Amt/Bal
Relative Peer Trans

Amt/Bal
Relative Peer

Trans Freq Investigate?
1 High High Low Normal Yes
2 Normal Normal Normal Normal No
3 High Normal Normal Normal Yes
4 Normal Low High High Yes

Table 1: Very small example training data set

Transaction Monitoring Under the Hood 7

Investigate = Yes}. Another would be: {If any two
values are High, Investigate = Yes}. This illustrates
that there will frequently be a more specific and
a more general version of a valid hypothesis.
Another would be: {If Geo Risk is High, Investigate
= Yes}. Another would be: {If Geo Risk is High
AND NOT Trans Amt/Bal = High, Investigate =
Yes}. Another hypothesis that would be consistent
with the data presented is: {If at least one of the
values is Low, Investigate = Yes}. As humans, we
can instantly see that this last hypothesis, while it
is consistent with the data, would have very poor
predictive value for cases outside of the training
data set. Our example seems trivial because there
are so few cases, and, in general, the more cases in
the training data set, the more likely that the set of
consistent hypotheses will be predictive for a larger
universe of cases. But there will almost always be
a number of hypotheses consistent with the set of
cases (and therefore in the valid hypothesis space),
even when the training data set is very large.

Limiting the search space is important because,
as shown above, the ways of combining the
cases for even a simple set variables is extremely
large. With the small set of variables and values
specified above, the set of possible cases is only
2 * 3 * 3 * 3, or 18. However, the number of all
the ways to combine the hypotheses that cover
these cases is much larger. Mathematically, the
number of ways of combining all the hypotheses
that use propositional Boolean logic (as decision
trees implicitly do) would be called the set of
all the subsets of the cases, also known as the
power set. The number of members in the power
set of a set of cases can be calculated as 2(number of

cases). In this example, that is 218 which is 262,144.
And, if you expand the ways of constructing
hypotheses to include assigning real number
weightings to the independent variables, as neural
networks do, and expand the set of independent
variables to a more realistic number, the set of
possible combinations becomes impossibly large
to consider and still maintain computability,
even with the speed of today’s computers.

The set of hypotheses within the search space
that the computer can consider is limited by the

approach that the computer uses to solve the
problem. The constraints that decision trees, neural
networks, and statistical profiling provide the limits
required to keep the search space manageable;
the particular ways in which they limit the search
space is one of the things that differentiates them.

Overfitting the Training Data Set

A hypothesis (A) overfits the data when there
is a hypothesis (B) in the valid hypothesis space
that performs better on a larger set of data, even
though hypothesis (B) does not fit the training data
as well hypothesis (A). Hypothesis (A) is learning
the training data too well, mistaking the training
data set for the real data. This can happen for a
number of reasons. One reason is that there are
coincidental relationships in the training data that
do not hold up in the larger data set. For example,
if we had made currency an independent variable,
and there was one transaction in Greek Drachmas
in the training data set that was pre-identified
as suspicious, the hypothesis that all Drachma
transactions should be tagged as suspicious would
be in the valid hypothesis space for the training data
set. Without that hypothesis, it is possible that no
other hypothesis in the valid hypothesis space would
predict that the Drachma transaction would be
suspicious (assuming the specified level of accuracy
for the valid hypothesis space is less that 100%, as
it might have to be if the factors that made the
Drachma transaction suspicious were not included
in the training data set as independent variables).

In the training data set above, it was obviously
a coincidence that both of the cases that had values
of Low and Normal for at least one of the variables
were positive. Eliminating the hypothesis that
Investigate = Yes for any transaction if Low and
Normal are included as two of the values of
independent variables would not reduce the
predictive accuracy of the valid hypothesis set for
the training data set. But it would almost certainly
increase the accuracy of the valid hypothesis
set on cases outside of the training data set.

In the larger data set we are imagining as part
of this example, we will now postulate that it is also

8 Transaction Monitoring Under the Hood

a coincidence that any case that has a value of High
for Geo Risk is positive. If we looked at more cases
in which Geo Risk is High, without any other factor
leading to Investigate = Yes, Investigate would be
No. How could that be true? One way it could be
true would be if there were factors that were not
included in the analysis as independent variables,
as with the Drachma transaction above. Without
some of those factors indicating a suspicious
transaction, Geo Risk alone would not lead to a
positive outcome. It happens that in the case in
the training data set, these unseen factors were
positive so the case was correctly classified as
positive, but in other cases, those factors are not
always positive. If that were true, the hypothesis:
{If Geo Risk is High, Investigate? = Yes} would
increase the rate of successful predictions for the
training data set, but decrease it for real data.

The graph in Figure 1 illustrates the effect of
overfitting. The accuracy of the model generated
during the first part of the training rises rapidly,
almost as rapidly on the test data as on the training
data. At some point, as the model is trained to
fit more and more accurately to the training data,
its accuracy when applied to the test data starts
to decrease. The optimal model is the one that

reaches maximum accuracy on the test data.
 Notice the use of the words “test data” rather

than “real data”. Almost all the approaches to the
problem of overfitting involve developing a model
on a training data set, and then testing that model
on other sets of data to determine the point at which
overfitting becomes a problem. A very frequent
approach is to divide the initial sample into three
independent data sets: a training data set, a test
data set, and an evaluation data set. The evaluation
data set is used to once again test the accuracy
of the model after the effects of overfitting have
been identified and reduced using the test data set.

 Overfitting is related to another problem.
Each of these approaches may find a locally optimal
solution that is not globally optimal, that is, the first
solution they find as a result of where they start
their evaluation and their underlying assumptions
may not be the best solution they could achieve.
Even within an approach (decision tree, neural
network, or statistical profiling), the model that the
computer arrives at by traversing the hypothesis
space in a particular way might be better than the
other ones that the computer evaluated, but might
not be better than some others that the computer
has not evaluated. This is discussed for each
approach in the section that covers that approach.

Noisy Data and Missing Values

Another source of inaccuracy in the model
generated on the training data set is noisy data. In the
real world, data contains errors and inconsistencies.
If there are errors and inconsistencies in the
training data set, the model learns from the
disinformation they provide. Generally, the same
techniques used to combat overfitting also work to
reduce the impact of noisy data. Some approaches
are very vulnerable to the effects of noisy data.
However, for decision trees, neural networks, and
statistical profiling, there are effective methods
of dealing with noisy data in the training data set.

Sometimes values are missing in some
cases either in the training data set, test data
set, evaluation data set, or during actual system
operation. Common methods for dealing with Figure 1: Effect of Overfitting

�
��

�
��

��

������ �� ��������

�������� ����

���� ����

������� ������ �� ��������

Transaction Monitoring Under the Hood 9

this situation are to ignore the case, to assign a
default value of the independent variable, or to
assign a probability to each of the possible values
rather than simply assigning a default. When a
system assigns a default it frequently uses some
criteria of similarity to other cases to decide
what default to assign. While ignoring a case
may work during the learning process, it is not a
good alternative during system operation, since
it would risk skipping over a potential money
laundering transaction, and in some cases, such
as a case in which a work telephone number is
missing, the very fact that the data is missing could
contribute to flagging a transaction as suspicious.

Value Weighting Outcomes

There are frequently situations in which it is
more important to accurately predict one outcome
or classification than another. In the detection of
money laundering, as in cancer screening, a false
negative is a bigger problem than a false positive.
Further investigation exposes a false positive.
A false negative is not investigated further, and
the costs can be very high. Of course, there is
a balance. If the level of false positives gets
too highg, it creates an insupportable burden on
the investigators. Still, it is desirable in money
laundering detection to err on the side of caution.

One obvious technique for favoring false
positives over false negatives is simply to lower
the threshold for reporting of positives. However,
more sophisticated techniques can actively
incorporate value weighting outcomes at each
step in the process, which may result not just in a
lower threshold, but actually in a different model.

Decision Trees

Decision trees are one popular, effective
approach to classification and prediction problems.
Decision trees have been used successfully to
detect fraud, to identify borrowers who will declare
bankruptcy in the next 12 months, to predict which
molecular structures will be effective against the

HIV virus, and to predict the crashworthiness of
potential new automobile designs. A decision tree
works like a game of Twenty Questions. In Twenty
Questions, one person thinks of something and the
other players are allowed to ask a series of questions
to guess what the person is thinking of. The goal of
the game is to be able to guess what the person is
thinking of with the minimum number of questions.

For the decision tree, the allowable set
of questions is limited to the independent
variables. What the algorithm is looking for
is the ideal order in which to test the variables.

To illustrate the decision tree approach, we’ll
code the values of the independent variables specified
in the General Framework section above as follows:

• Geo Risk will have 2 possible values:
 High or Low;
• Trans Amt/Bal which will have 3 possible
 values: High, Normal, and Low;
• Relative Peer Trans Amt/Bal will have 3
 possible values: High, Normal, and Low;
 and
• Relative Peer Trans Freq have 3 possible
 values: High, Normal, and Low.

Figure 2, on the next page, represents a
decision tree based on these independent variables.

Decision trees start at a root node, usually
drawn at the top. In Figure 2, the root node for
classifying a transaction is Relative Peer Trans
Amt/Bal. The transaction is then followed down
the tree through the child nodes corresponding
to the values of its attributes. Just as in Twenty
Questions, the independent variable to examine
at each child node depends on the variable that
comes before it. A case is classified by moving
down a tree branch until you reach the end of the
branch (called a leaf node). In Figure 2, the left-

(continued on page 10)

10 Transaction Monitoring Under the Hood

most branch has already reached a leaf node. If a
case has a high Relative Peer Trans Amt/Bal, the next
independent variable to test is Relative Peer Trans
Freq. If that is also high, this tree will classify the
case based on just those two independent variables
as Investigate? = Yes. In other words, no matter
what the values of the other two independent
variables are, the transaction will be investigated.

 If a case has a low Relative Peer Trans Amt/
Bal, the next independent variable to test is Geo
Risk. If Geo Risk is high, the tree will proceed to
the next independent variable, since it has not
yet determined the classification based on those
two answers by themselves. It will continue to
follow down the branch until it either reaches
a leaf node with an Investigate? value or until
it exhausts the independent variables without
having reached a leaf node with a determinate
value. A leaf node with an indeterminate value
indicates that the training data set does not contain
enough information to classify the combination of
values of the independent variables represented
in the branch definitively as positive or negative.

Notice that the variables have been coded
as discrete, non-continuous values. This is a
requirement of the decision tree approach, because
the decision at each node must be a decision

between one mutually exclusive classification and
another. We’ve taken the standard approach for
implementing decision trees based on values that
are continuous, namely, dividing the continuous
values into ranges, such as High, Normal, and Low.
There will inevitably be a loss of information,
which may impact the efficacy of the model. The
values can be divided into narrower categories, but
the finer the division, the more complex will be
the resulting decision tree, which defeats the goal
of making the decision tree simple. This is one of
the trade-offs built into the use of decision trees,
although some advanced implementations have
sophisticated methods for handling continuous
values that minimize the impact of this problem.

Splitting and Independent Variable Test
Order Criteria

 One of the most important differentiations
among alternative decision tree algorithms is the
function they use to select the order in which to
place each of the independent variables in each of
the tree branches. Many different decision trees
are members of the valid hypothesis space. The
principle that the basic decision tree approach
generally uses to choose between these trees is

Figure 2: Top levels of a decision tree for determining the value of Investigate?

�������� ���� ����� ��� � ���

���� ������ ���

�������� ���� ����� ����

���� ������ ���

������������ � ���

��� ����

���� ���

��� ����

���� ���

Transaction Monitoring Under the Hood 11

the same principle that determines who wins in
Twenty Questions; the tree with the fewest nodes
(that is, the simplest tree, corresponding to the
fewest questions in Twenty Questions) is judged
by the decision tree generation algorithm to be
the best predictor of outcomes. The choice of the
ordering and splitting principle is generally geared
to produce the simplest possible tree. (This method
of searching the hypothesis space is known as a
greedy search, as opposed other types of searches
such as breadth-first or depth-first, because it tries
to get the most right answers as quickly as it can.)

The choice of the simplest tree as the best
is based on an assumption associated with the
philosophical principle of Occam’s razor, much
used in philosophy and science since 1320, when
William of Occam formulated it. Occam’s razor
postulates that the simplest hypothesis that fits a set
of data is the best. In practice, Occam’s razor is
often, but not always, correct. When it is incorrect,
the decision tree approach will not choose the
optimal decision tree from the set of possible
decision trees. There are a number of remedies
for this, including generating trees with different
splitting functions and testing the resulting trees
on the test data to see which performs the best.

The aim of the splitting function is to select
the independent variable that is most useful for

splitting the cases at each node. The root node
should test the independent variable that most
effectively splits the outcomes. Each child of
the root should test the independent variable that
most effectively splits the remaining cases, and
so on. One function sometimes used to make
this determination is based on the information
theory measure called entropy, which is the
result of a mathematical function to measure
the extent to which the groups are homogeneous
after a split. The remaining independent variables
are tested at each node and the one that results
in the most homogeneous groups is selected
until the group has a completely homogeneous
value of Investigate?= Yes or Investigate? =
No, at which point it becomes a leaf node.

One of the most widely employed decision tree
algorithms is called CART (Classification And
Regression Trees). CART produces binary trees
(that is, trees that only allow two classifications
at each split, like the version of Twenty Questions
in which only yes or no questions are allowed).
CART originally used a splitting function quite
similar to entropy called Gini, named after the
Italian economist who invented it. A different
algorithm that can also be used with CART is
called “Twoing” which produces trees that may
be more balanced than trees produced using

Figure 3: Decision Trees based on different splitting algorithms

��� ������ ������

��� ����� ������ ����������� ����� ������ ��������

��� ����� ��������� ����� ������ ��������������� ������

��� ����

��������� ���������������� ����� ����� ������������� �����

��� �������� ���� ����� ���� ��������� ��� �������� ���� ����� ������ ���������

��� ������ ������

12 Transaction Monitoring Under the Hood

Gini or entropy as the split ordering function.
For example, say we’re trying to predict

which of 200 brands of cereal that a consumer
is most likely to buy. On the left in Figure
3, on the previous page, is a decision tree
based on a Gini algorithm, on the right a
decision tree based on a Twoing algorithm.

Figure 3 also illustrates a possible alternative
principle for preferring one decision tree over
another. Assuming that the two trees in Figure
3 are both members of the valid hypothesis
space with similar degrees of accuracy, the tree
based on twoing might be preferred because
its discriminations are much easier for people
to understand. The more powerful decision
tree packages provide a choice of splitting
function. You can experiment with different
splitting functions and decide which produces
the result that is most useful for your purpose.

Generating Rules from Trees

One major appeal of the decision tree approach
is that there is a virtually direct translation from
the decision tree to rules that can be understood,
evaluated, and applied by humans. A rule
produced by the tree shown in Figure 2 would read:

{If Relative Peer Trans Amt/Bal = High AND
Relative Peer Trans Freq = High THEN Investigate?
= Yes.}

Dealing with Overfitting

There are two approaches to deal with
overfitting of decision trees:

• stop growing the tree at some point; and
• post-pruning the tree.

Post-pruning the tree is more effective in
practice because it’s too hard to decide when to
stop growing the tree without building the entire
tree. The decision tree generated while training
on the training data set will normally be post-
pruned after it is applied to the test data. An error-

reduction formula can be applied at each node to
determine if that node improves the accuracy of the
tree on the test set. Each branch of the tree will be
pruned back from leaf nodes to the point at which
the error rate for the test data starts to rise. This will
prune the tree back to a point that approximates the
optimal amount of training, illustrated in Figure
1 in the General Framework section, above.

 As the tree is pruned back from the leaves,
the purity of the outcomes will be reduced. The
leaves were reached through a series of nodes that
progressively worked their way down to the most
homogeneous set of outcomes (either all positive
or all negative). When the tree is pruned, the
new leaves will have a mixture of positive and
negative outcomes. At that point, the probability
of a positive or negative outcome at that leaf
node can be calculated based on the proportion
of positive and negative outcomes. As is always
the case with the outcomes of neural networks and
statistical profiling, a threshold can then be set.
Above a certain level of probability of a positive
outcome, the outcome will be given a value of
Investigate = Yes, possibly with an indication
of the degree of certainty of the classification.

Another technique involves translating the
entire tree to a set of rules and then pruning the rules
rather than the tree. One advantage of this technique
is that it allows pruning nodes in the middle of a
branch, removing the limitation that a branch can
only be trimmed back from the leaf node. Another
is that improves the readability of the rules that can
be derived from the tree. Once the rules have been
derived, they can be tested individually and the
order in which the rules are tested in the operational
system can be tweaked to improve efficiency.

Summary of Strengths and Weaknesses of
Decision Trees

The natural strengths of decision trees include:
• direct translation of models to
 understandable rules;
• good performance when the problem
 domain lends itself to rules based on the
 data items after they have been classified

Transaction Monitoring Under the Hood 13

 into mutually exclusive values;
• easy handling of categorical variables
 with more than a single category, which
 pose problems for neural networks and
 statistical techniques; and
• good performance.

The natural weaknesses of decision trees
include:

• difficulty of classifying continuous
 variables into discrete, mutually exclusive
 categories without information loss;
• poor performance when the problem
 domain does not lend itself to rules based
 on the data items after they have been
 classified into mutually exclusive values;
 and
• difficulty determining the best tree to use
 when that tree is not the smallest tree.

As with each of these approaches, the
effectiveness of decision trees is heavily
dependent on how you implement them, on what

data you use and how you formulate that data
for the decision tree’s use, and on which of the
variations of the approach you choose. The only
definitive measure of effectiveness is testing on
real data, and even then, the effectiveness will vary
depending on the data you use as your test sample.

Neural Networks

 A psychologist and a logician came up with
the original artificial neural networks in the 1940s
as part of an attempt to understand how the brain
works. They observed that the brain is comprised
of a very complicated interconnected network of
brain cells. Emulating this structure, they designed
a computer model consisting of a complex,
interconnected network of independent computing
units, each with a similar construction. Figure
4 is a graphical representation of a hypothetical
neural network for predicting the probability of
Investigate? = Yes from our four independent variables.

Figure 4: A neural network for predicting the probability of Investigate? = Yes

�����

��� ����

����� ����
���

�������� ����
����� ����
���

�������� ����
����� ����

����������� ��
�������������� �
�����

����� �����
�����

������
�����

������
�����

������

14 Transaction Monitoring Under the Hood

Each of the input variables is fed into one of the
units in the input layer. The input layer unit processes
the input and produces a single output. That output
is passed on to each of the units in a second layer of
units, called the hidden layer. The connection of the
input layer units to each of the units in the hidden
layer gives the network the power and flexibility to
represent very complex relationships among the
input variables. The units in the hidden layer are
each connected to an output unit, which combines
the values they produce into a single value, in our
example, the probability that Investigate? = Yes.

 The independent units in the classical form
of neural network are called Perceptrons. The
structure of each of the perceptrons is similar. In
the original model, each perceptron would output a
0 or a 1. Perceptrons would determine whether to
output a 0 or a 1 based on comparing the weighted
sum of its input values to a threshold level. The
biological analogy is that a neuron in the brain fires,
if, and only if, it is sufficiently stimulated. When
it fires, it sends an impulse through its dendrites
and synapses to other neurons. Perceptrons

split their computation into two components,
a combination function and a transformation
function. The combination function is generally
some form of weighted sum of the inputs, with
a separate weight assigned to each input. For
our example, this would be expressed as follows:

 =
1
(Geo Risk) +

2
(Trans Amt/Bal) +

3
(Relative Peer Freq) +

4
(Relative Peer Trans Amt/Bal)

where is the result of the combination function
and

1
-

4
are the weights that the perceptron

assigns to each of the inputs.
In the original model, this result would be

compared to a threshold value to produce a 0 or a
1. In a neural network with one hidden layer, each
perceptron in the hidden layer would output a 0 or a
1 to the output perceptron. The weights assigned to
the inputs of each of the perceptrons in the hidden
layer are independent of each other. The output
perceptron would, in turn, apply its combination

Figure 5: A perceptron, the independent unit in a neural network

å
�

�

�
�

�
� ������������

� ������ ��������
�� ���� ����� ����������
��� ������������ �� ����
�����������

� �������������� ��������
����� ��� ��������� �����
�� ����� ��� �������� �
������ ������ ������

� ��������� ��������
�������� ��� ��������
������ ���� � ������
������

Transaction Monitoring Under the Hood 15

function to the inputs from each of the perceptrons
in the hidden layer and then apply its transformation
function to determine whether to output a 0 or
a 1, which, in our example, would correspond
to Investigate? = No or Investigate? = Yes. The
structure of a perceptron is illustrated in Figure 5.

During the training process, the neural network
modifies the weights assigned to each of the inputs
of each of the perceptrons until the network can
successfully predict the outcomes of the cases in
the training data set. Looking at the model of the
neural network shown in Figure 4, you can see that
being able to adjust the weight of each input to each
perceptron allows neural networks to model very
complex relationships among the input variables.

Backpropagation

Work on neural networks stalled in the 1970s
because the most powerful computers generally
available at that time were inadequate for supporting
neural network analysis of real world problems and
because two MIT professors published a paper
showing that the original neural network model had
theoretical problems. The development of neural
networks picked up momentum again in the 1980s
as a result of two developments: John Hopfield
invented backpropagation, which addressed the
theoretical problems, and computers became much
more powerful. Since then, neural networks have
been widely employed in the commercial world.

The basic steps in backpropagation are:
• the output for a case is calculated based on
 the existing weights in the system;
• the discrepancy between the output and the
 expected result is calculated;
• each unit is assigned a share of
 responsibility for the error, starting by
 assigning the entire error to the output
 perceptron, which then assigns a share of
 responsibility to each of the perceptrons
 in the hidden layer using mathematical
 procedures such as taking partial derivatives
 of the transformation functions; and
• the weights are nudged in a direction that
 would lessen the discrepancy in proportion

 to their share of responsibility for the error.
 A factor called the learning rate controls

how quickly the weights are changed. This
usually starts out large and decreases as accuracy
improves.

The process of adjusting the weights
involves measuring how sensitive the output of
a perceptron is to changing the weight on each
input, and whether changing the input would
increase or decrease the discrepancy. When the
backpropagation algorithm changes the weights
in a direction that will correct the discrepancy, it
doesn’t adjust them to exactly predict the outcome,
because the final set of weights needs to work for
all of the cases in the training data set, and also
because exactly fitting all the cases in the training
data set increases the likelihood of overfitting.

Variations on Basic Neural Networks

There are a number of variations on the basic
neural network approach. Some neural networks
are feed forward networks; others are recursive.
In a feed forward network the links between the
perceptrons are unidirectional. Perceptrons in one
layer link to the next layer; there are no links from
a perceptron to another perceptron in its own layer
or to a perceptron in a previous layer. A recursive
layer allows such links. The brain is a recursive
network. The neural networks in commercial use
are mostly the simpler feed forward networks.

First Ever CAMS Certification Exam!
*Deadline to Apply is February 12th

Miami Beach, Florida
March 26, 2003

16 Transaction Monitoring Under the Hood

There are also different choices for the
transformation function that converts the output
of the combination function in a perceptron
into the perceptron’s output. There are three
common choices for the transformation
function: linear, hyperbolic tangent, and
sigmoid. Figure 6 is a graphical representation
of the difference between these functions.

The linear function is not generally used
because it can only represent linear relationships.
Both the sigmoid function and the exponent (tanh)
function can represent non-linear relationships. The
main difference between them is that the exponent
(tanh) function produces outcomes between –1
and 1, while the sigmoid function produces values
between 0 and 1. The sigmoid function is by far
the most commonly used transformation function.
Usually the same transformation function is
used in all of the perceptrons in a network.

Up to now we have talked about output
values being 0 or 1. With the sigmoid function,
the values are continuous between 0 and 1. In

order to produce a result of Investigate? = Yes or
Investigate? = No, we need a threshold value. This
threshold value can be adjusted to produce greater
sensitivity to Investigate? = Yes so that we don’t
miss any positives. (In addition, there are ways
to incorporate value weighting of outcomes into
the entire weight adjustment process.) Having
values between 0 and 1 is advantageous because
it allows us to see where the cases are on a
spectrum of very normal to very suspicious. We
would want to put a priority on investigating
those transactions that are most suspicious.

There is also the option of having multiple
hidden layers. In practice, a single hidden layer
is usually more than sufficient, and more hidden
layers increase the danger of overfitting. But for
extremely complex domains more hidden layers may
be useful. One of the largest neural networks ever
deployed, AT&T’s network for reading numbers
on checks, had seven layers with a combined
total of hundreds of thousands of individual units.

 Backpropagation is the learning algorithm
that got neural networks out of the theoretical
slump of the 1970s, but, since the discovery of
backpropagation, a number of other learning
algorithms have been explored. One, PRCE
(Probabilistic Restricted Coulomb Energy), which
has been used in both credit card fraud detection
and money laundering detection, transforms the
independent variables into features and builds a
multi-dimensional feature matrix. Features of two
different classifications (such as Investigate? = Yes
and Investigate? = No) can sometimes have an area
of overlap. For example, as Geo Risk goes from
High to Low in a continuous spectrum of values, a
greater proportion of Investigate? = Yes transactions
have Geo Risk on the high end, although there are
still many Investigate = No that have a Geo Risk on
the low end. During training, regions in the multi-
dimensional feature matrix are identified as being
more or less likely to belong to one classification
or another. A probability density function is used
to measure the probability that a transaction with
a set of features that put it in a particular place in
the matrix should be classified as Investigate = Yes.

 Genetic algorithms have also received

��� ��� ��

������

���

���

���

���

� ���

� ���

� ���

�������
����������

�������� ������

Figure 6: Three Transformation Functions

Transaction Monitoring Under the Hood 17

attention as a technique for neural network
learning. Genetic machine learning algorithms
deploy competing neural networks and evolve
them to see which survives as the fittest.

Data Preparation: 0 to 1

 One characteristic of neural networks is that
they have an affinity for input data that has been
massaged so that all the values of all the input
variables are in the range of 0 to 1. One reason for
this is that, since all of the perceptrons in a network
have the same structure, and the outputs of some
of the perceptrons are the input to others, it is
desirable to have all of the values in the same form,
which is 0 to 1, if you are using the most commonly
used transformation function - the sigmoid
function. This is the neural network counterpart
to the need to divide values into mutually
exclusive categories for use with decision trees.

 Massaging all the inputs to be in the range
of 0 to 1 for neural networks is as hard as dividing
them into mutually exclusive categories for decision
trees. The most common technique for variables
that have continuous values such as dollar amounts,
averages, and ratios, is to predefine a range bounded
by a minimum and a maximum value and define a
value somewhat lower than the minimum as 0 and
a value somewhat higher than the maximum as
1. Of course, the process of defining minimums
and maximums is notoriously error-prone. There
are several techniques for handling variables that
represent mutually exclusive categories (ordered
mutually exclusive values such as numbers of
children or age need to be handled differently than
unordered values such as gender and status codes).
Dates present another issue. Of course, there are
ways of handling all of this, but they are not without
pain, and they introduce a potential source of error.

Overfitting and Premature Convergence on
a Solution

 One of the algorithms used to avoid
overfitting in neural networks is a technique called

weight decay, which consists of decreasing the
weights by a small amount in each iteration. The
effect of this is to keep the final weight values small,
which militates against the selection of a complex,
highly differentiated hypothesis, resulting in a
neural network that is less likely to have been overfit
to every nook and cranny of the training data set.

 The best technique to avoid overfitting for
neural networks, as for all of the approaches, is
the use of additional data sets after training on
the training data set. Use of a test data set and
an evaluation data set, as described in earlier
sections, is highly recommended. Additionally,
there are various methods of cross-validation
using the same data partitioned in multiple ways.

 One problem faced by neural networks that
is related to overfitting is that they sometimes
converge prematurely on a less than optimal
solution. This is the problem of the local versus
global optimal solution referred to in the General
Framework section. Unlike decision trees, neural
networks generally start their search in a relatively
arbitrary point in their overall hypothesis space.
Their usual search algorithm is called a gradient
descent search, as opposed to the greedy search
algorithm used for most decision trees. One way to
visualize a gradient descent search is to think of a
topographical model with hills, mountains, valleys,
and crevices. The lowest point in the topography
represents the globally optimal solution. The
gradient descent search keeps trying to move in a
downward direction to find the lowest point. Once
it can go no lower, it stops. The problem is that it
may be in a valley on one side of a mountain that
has a much deeper canyon on the other side. It
won’t automatically proceed up the mountain to
find the canyon. A variant of the gradient descent
search called a stochastic gradient descent search is
designed to decrease this danger, but the best cure
is, once again, to test against more data. A solution
that is locally but not globally optimal will not
perform well on data outside the training data set.

 Some vendors offer a facility to re-train the
system that can be executed by the user with little
vendor assistance. This is very valuable because if
new patterns emerge in the data, re-training can

18 Transaction Monitoring Under the Hood

make the system significantly more accurate. Of
course, as is the case with any system, the system
is only as good as its input variables. If the change
in patterns of activity involves data items that
have not been selected for inclusion in the model,
the vendor will need to be involved in adding
these new independent variables. The re-training
only readjusts the weights of the independent
variables that are already defined to the system.

The Black Box Bogey

The criticism of neural networks most
frequently heard from vendors who don’t use them
is that they are a black box; you don’t know why
a transaction has been reported as suspicious. It
is true that you wouldn’t be able to understand the
weights that have been assigned in each unit of
the neural network even if you used the advanced
technologies that are now available to know what
the weights were. The power of the network lies
in the complexity of the interactions between the
units and the processing of the weights by the
non-linear mathematical functions. But there are
multiple techniques for identifying which of the
inputs contributed most to the high probability
assigned to a suspicious transaction. The process
of backpropagation itself relies on a measure of
which weights in which units contributed most
to the final verdict. A related technique called
sensitivity analysis can be used to find out which
of the variables in the suspicious transaction the
network was most sensitive to. Mr. Bruce Fisher of
ACI Worldwide, which uses PRCE as its learning
algorithm, reports that ACI uses the probability
density function mentioned earlier to assign three
reason codes to a suspicious transaction. These
reason codes describe the characteristics that made
the point in the multi-dimensional feature space
occupied by the transaction suspicious. If you know
the three top reasons that a transaction was reported
as suspicious, that gives you a good handle on what
you should be looking at when you investigate it.

An additional issue related to the difficulty
of understanding how a neural network works
internally is that managers may want an explanation
of how the system works to make a purchasing

decision, and regulators (or, worse, courts) may
want an explanation to justify its use. To deal
with this, the techniques for figuring out why the
network has identified a particular transaction as
suspicious can be used to analyze which factors
the system is most sensitive to in general. But
the most powerful arguments for the use of neural
networks are demonstrations of their effectiveness
in identifying suspicious transactions, both
those provided by the vendor, and, perhaps more
importantly, those generated during benchmarking
at your site during and after product evaluation.

Summary of Strengths and Weaknesses of
Neural Networks

The natural strengths of neural networks
include:

• ability to handle complex relationships
 among variables (including non-linear
 relationships) can result in a high degree of
 predictive accuracy;
• natural handling of continuous variables;
 and
• successful use in fraud detection, a domain
 that shares many of the characteristics of
 money laundering detection.
The natural weaknesses of neural networks

include:
• difficulty in understanding why the system
 identified a particular transaction as
 suspicious (mitigated by the ability to
 identify the most likely factors that led to
 the identification);
• difficulty in understanding how the
 system generally arrives at its results and
 in explaining the internal workings of the
 system to managers and regulators
 (mitigated by the ability to identify which
 factors the system is most sensitive to and
 to cite track record statistics if the system
 is relatively very accurate);
• difficulty of massaging input variables into
 the range of 0 to 1; and
• possibility of converging prematurely on
 a solution that is locally but not globally
 optimal.

Transaction Monitoring Under the Hood 19

If a neural network package were to turn
out to be even slightly better at accurately
identifying suspicious transactions as a result
of its ability to represent complex relationships
among the independent variables (not to say
that it necessarily would be), that might more
than make up for the difficulty in understanding
its internal functioning. Trade-off decisions
such as this are endemic to these technologies.

Statistical Profiling

Statistical profiling is conceptually more
familiar than decision tree or neural network
approaches, given that we are not going to go into
the mathematics of statistical analysis. In order to
evaluate a transaction, statistical profiling applies
a statistical measure of variance to determine
the extent to which the transaction deviates from
previous transactions. Variance can be measured
for many variables. A transaction can be evaluated
based on a number of characteristics, such as,
its absolute amount, its amount compared to the
amounts of other transactions within a particular
time period (daily, weekly, monthly), transaction
frequency during the period the transaction is
made, and relationships with counter-parties inside
or even outside the institution. A transaction can
be evaluated against past patterns of behavior
for the account that made the transaction,
for the account and its related accounts, and
for accounts in the account’s peer group.

Statistical profiling systems use various
principles to determine an account’s peer group. It
is not unusual for a statistical profiling vendor to
look to the institution at which it is implementing
its package to define the groups based on account
characteristics that the institution specifies as
part of the configuration process. Once the peer
groups are specified, their behavior can change
dynamically and variance will be measured based
on the current behavior of the group. Mr. Mark
Kramer of NetEconomy makes the following
analogy. “If a flock of birds is flying together,
and they all make a sharp turn, there is nothing
unusual going on with the birds that are turning.

What’s unusual and needs to be investigated is
when one of the birds veers off from the flock,
even by going straight when the rest of the birds
turn.” You would not be judged to be behaving
in an unusual way if you went over your normal
credit card balance at Christmas time. In fact,
since many retail businesses experience a surge of
activity during the Christmas season, if an account
holder claims their account is for a retail business,
but it does not show any change in activity at
Christmas, the lack of change may merit attention.

One issue with classical statistical techniques
such as linear, logistic, quadratic functions
is that they do not in and of themselves have
ways of representing complex relationships
among independent variables. Vendors may
have proprietary algorithms to use relationships
between variables to come up with a final score that
indicates the probability that a transaction should
be classified as Investigate? = Yes or Investigate? =
No by comparing the combined probability with
a threshold level, but working with relationships
among a large number of independent variables
is not intrinsic to the statistical profiling approach,
as it is to decision trees and neural networks.

Like decision trees and neural networks,
statistical profiling can be used in conjunction
with list checking and processing rules that flag
transactions based on characteristics belonging
to known patterns of money laundering. This
is important for recognizing patterns such as
the opening of an individual account followed
by a cash deposit just under the reporting limit
followed by a wire transfer out of the account
followed by a substantial period of inactivity.

Another issue with the statistical profiling
approach is that there is no intrinsic way to flag
out-of-pattern transactions as false positives.
Some vendors offer facilities to address this. For
example, they may allow you to mark an account
as a trusted account, exempting it from further
testing, but that is a blunt instrument that could
be dangerous. Another approach would be to
use the trusted flag to reduce the probability
scoring of the transaction rather than exempt the
account from checking altogether. Some vendors
also offer a facility for removing a suspicious

20 Transaction Monitoring Under the Hood

transaction that has been investigated and found
to be legitimate from an account’s history so that
it doesn’t skew the pattern that the system will
compare transactions against in the future. For
example, when an individual purchases a home,
you will want to remove the abnormally large cash
transactions associated with the purchase from
future statistical evaluation of the account’s history.

A strength of the statistical profiling approach is
that it is part and parcel of the system that it profiles
normal transactions and reports departures from
the norm. This approach naturally flags unusual
transactions that could be part of new money
laundering patterns, thus detecting new patterns
that it hasn’t been programmed to recognize.

As a result of using departure from the norm as
its method of classifying transactions, overfitting
takes on a somewhat different complexion with
the statistical profiling approach. Of course, in
order to identify what to report, it has to have some
internal way to separate normal transactions from
abnormal transactions. The contours of normal
and abnormal transactions fit together like two
irregularly shaped pieces in a jigsaw puzzle. The
system has to recognize the boundary between the
two pieces to know which side of the boundary
to put a transaction on. In the case of statistical
profiling systems, this would normally be the
done through the process of configuration and
benchmarking on what we have been calling a
training data set. Configuration involves choosing
the independent variables to be tested, adjusting
the statistical algorithms including their sensitivity
levels, and setting up account groupings for peer
group comparisons, among other things. The
configuration will then be tuned to detect the
known instances of money laundering in the
training data set with maximum accuracy (perhaps
erring on the side of false positives rather than false
negatives). After this process is completed, the
configuration will be tested against other data sets,
analogous to the test data set and the evaluation
data set, to ensure that the configuration is correct.

Of course, as with all of these approaches,
if data items other than those chosen in the
configuration process are significant either in
existing or in new patterns of money laundering, the
system will not be able to recognize the suspicious
transactions on the basis of those variables.

Summary of Strengths and Weaknesses of
Statistical Profiling

The natural strengths of statistical profiling
include:

• intuitive methodology that’s easy to
 understand and to explain to managers and
 regulators (in principle, though not at the
 level of the statistical formulas);
• natural tendency to recognize new patterns
 of money laundering, since it flags anything
 that is outside of the norm;
• ease of understanding why a transaction was
 identified as suspicious (unless it was
 flagged due to relationships between the
 independent variables, see below);
• natural handling of continuous variables;
• efficient execution, as the calculations
 required for statistical analysis are easily
 processed by the computer; and
• minimal need to re-code data during
 configuration compared to other approaches
 (although it will probably be necessary to
 identify groups of accounts and transaction
 types for peer group comparisons).
The natural weaknesses of statistical profiling

include:
• ability to consider complex relationships
 between independent variables is not part of
 the basic approach, and therefore it
 must be incorporated to whatever extent
 possible using statistical algorithms that
 are generally proprietary, and are therefore
 no more understandable than the operation
 of neural networks;
• difficulty in handling categorical variables
 with more than a single category; and
• difficulty in configuring some items such as
 account groups and transaction types in
 order to produce the best possible results.

Conclusion

 Transaction monitoring software can be a

valuable part of your overall compliance strategy. It
provides the ability to analyze transactions as they
occur by comparing their relevant characteristics
to known money laundering patterns and to

Transaction Monitoring Under the Hood 21

historical patterns in the transaction account and
accounts similar to the transaction account. Partly
as a result of computerization in all spheres of
financial institutions’ operations, especially in
larger institutions, huge volumes of transactions
are executed every day, and even every minute.
Humans unaided by computers are simply unable
to sort through the resulting mountains of data.

The sophisticated software approaches we
discussed in this article – approaches that go
beyond list checking and rules processing – help
enable institutions to catch transactions that should
be investigated. In money laundering, as soon
a scheme is recognized and becomes generally
known, clever criminals invent new techniques.
In this article, we’ve discussed how decision trees,
neural networks, and statistical profiling can spot
transactions that may be using one of these new
techniques even though the technique had not yet
been invented when the system was implemented.

Unfortunately, these systems are expensive,
and even after you’ve decided that a system of this
kind should be part of your overall strategy, it is
not easy to determine which system would be most
appropriate for your institution. There are many
factors to consider besides which approach a vendor
uses to drive its core money laundering detection
engine. You need to consider how the package
will integrate with the institution’s overall software
architecture, how much effort it will take to install
and configure, how the workflow component of
the system fits in with your own workflow, and
other factors outside the software itself, such as
the support offered by the vendor and the vendor’s
long-term financial stability. Not to mention price.

Even the much narrower question of which of
the three approaches we’ve discussed would be
most appropriate is a hard one. As we’ve seen,
each of the approaches has natural strengths
and weaknesses, but how the approach is
implemented can be even more important than
which approach it is. That includes both how
the approach is implemented in the package
and how it is implemented at your institution.

All of the packages are heavily dependent on
configuration. Which independent variables are
chosen during the set up is particularly critical.
Factors such as how data is massaged so that it can
be processed by the system and how such things as

peer groups of accounts are chosen are also very
important. Installation of most of these systems at
each institution involves a process very much like
the process of training and adjustment we described
throughout the article for each of the approaches:

• after the choice of independent variables
 and the initial configuration, the system
 is run against a training data set of cases
 comprised of the values of the independent
 variables and pre-identified correctly coded
 results;
• the system is tuned so that it can correctly
 predict the results from the independent
 variables;
• the system is run against other data
 sets to make sure it hasn’t over-learned
 the peculiarities of the training data (see
 discussion of overfitting in the body of the
 article).

Implementation of these steps is an art as much as
it is a science.

The idea of a bake-off, during which you
would benchmark each of the systems, is an
intuitively appealing solution to the challenge of
evaluation. It’s a great solution, but, unfortunately,
benchmarking itself is expensive for your
institution, even if you could get multiple vendors
to do the work on their end for little or no charge.
The process of choosing independent variables,
extracting the data, and massaging the data so that
it is in a form the different packages will accept
would be costly. An additional problem is that the
results may not be entirely clear-cut, since different
technologies and configurations may work better
on different data, and you would presumably be
doing the benchmarking against one set of data.

While your understanding of the technological
approaches involved in these packages should only
be one factor in a software selection decision of
this magnitude, your informed opinion regarding
the technology hopefully can play some role in
your decision making process, help you talk about
the decision with managers, regulators, vendors,
and staff, and can also make you feel more
comfortable with the decision you ultimately make.

