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In this article, we will briefly explore the inner 
workings of some of the more advanced software 
approaches used by transaction monitoring 
systems to detect money laundering.  If you 
are in the market for one of these sophisticated, 
expensive systems, it is important to have some 
understanding of the underlying technology, if 
for no other reason than to get past the tag-lines.  

For example, you will hear that neural 
networks are black boxes that don’t give the user 
any understanding of why they are singling out a 
transaction as suspicious.  In fact, the offerings of 
the market-leading vendors of all of the advanced 
transaction monitors have engineered their systems 
to address the limitations of simplistic academic 
implementations, such as the black box limitation 
of a simple neural network.  In order to evaluate 
an offering, it is necessary to understand how the 
system implements the technology it uses and how 
the implemented system works in the real world.  
No system can be judged superior simply on the 
basis of whether it calls its technology decision tree, 
neural network, or statistical profiling.  Still, if you 

decide to use transaction monitoring software, the 
technological approach the software uses to detect 
money laundering is a factor you should take into 
consideration when choosing which system to use. 

An effective anti-money laundering strategy is 
comprised of policies to satisfy “Know Your Customer” 
and Enhanced Due Diligence requirements, training 
and awareness programs, and reporting and record-
keeping procedures.  Software systems should be seen 
as one tool to use as part of this comprehensive strategy.  

Software vendors offer systems that check 
potential clients and counter-parties against lists 
of known prohibited and high-risk individuals 
and entities (e.g., lists such as the OFAC list and 
databases of Politically Exposed Persons).  Other 
vendors offer systems that check against rules 
that are packaged with the system; most of these 
allow you to customize rules for your institution. 
The vendors that offer the transaction monitoring 
approaches based on decision trees, neural networks, 
and statistical profiling incorporate list checking 
and rule processing, but they go even further than 
that.  Whether or not the advanced technological 
approaches offered by these vendors are appropriate 
for your institution is a question you need to address as 
a part of your overall anti-money laundering strategy.

This article discusses decision trees and neural 
networks, two of the techniques used in what 
is sometimes called data mining or knowledge 
discovery.  It also discusses statistical profiling.  The 
vendors that use these approaches claim that their 
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software can discover new methods of money 
laundering on their own, even when rules that 
identify those cases haven’t specifically been 
programmed into them.  I hardly blame you if 
you’re skeptical, but this article should give you 
some sense of how this might be possible. 

The utility of these sophisticated approaches 
lies at least as much in their day-to-day role in 
detecting existing patterns of money laundering 
as in their detection of new patterns.  If computers 
are able to recognize all the known patterns, 
without detectiing new ones, they can still compare 
transactions as they happen with a wealth of 
historical data and analyze the patterns in near-real 
time, in a way that would be completely beyond 
human capacity.  We are focusing on learning new 
patterns because it will allow you to understand both 
how these systems learn new patterns and how they 
detect existing patterns.  The first two approaches 
we’ll discuss, decision trees and neural networks, 
are derived from the field of machine learning.  

Can machines learn?  Deep Blue, the computer 
that beat Kasparov at a regulation chess match 
in 1997, is one example that made the headlines.  
Computers have been built that have learned 
to analyze astronomical phenomena, to predict 
recovery rates in pneumonia patients, to perform 
insurance risk-management analysis, and even 
to use vision sensors to drive vehicles on public 
highways at up to 70 miles per hour (hopefully 
not while I’m on the road).  One of the areas in 
which machine learning approaches have been 
applied very successfully is the detection of credit 
card fraud.  A number of the companies that are 
now using machine learning to detect money 
laundering started by using it for fraud detection.

Since decision trees and neural networks as they 
are applied to the detection of money laundering 
are operating in the same domain, they face similar 
problems, including issues surrounding selection of 
independent variables, training, sample selection, 
overfitting, and noisy data.  In many ways, they 
are more alike than they are different.  Although 
statistical profiling is not strictly a machine 
learning approach, in the field of money laundering 

Machine Learning
 versus

Artificial Intelligence

So much emotionally charged controversy 
has surrounded the field of Artificial Intelligence 
that it has been divided into two branches: strong 
AI and weak AI.

Believers in strong AI claim that a 
computer could be built that would think at (or 
even beyond) the level of humans and maybe even 
be conscious of itself, as HAL was in the movie 
2001.  (”I’m sorry, Dave. I can’t let you do that”.)

In 1950, Alan Turing proposed the Turing 
Test, related to strong AI.  His operational 
definition of artificial intelligence was the ability 
of a computer to achieve a level of performance in 
all cognitive tasks such that it could fool a human 
investigator communicating with it by teletype 
into thinking that it was human.  To pass this 
test, a computer would need all of the following 
abilities: the ability to process natural language, the 
ability to represent knowledge so that it could store 
information given to it during the investigation, the 
ability to reason so that it could answer questions 
and draw new conclusions based on information 
given to it by the investigator, and the ability to learn.

Note that the Artificial Intelligence abilities 
that a computer needs to be useful in detecting 
money laundering are much more limited than 
those required to pass the Turing Test.  It will 
be acceptable to most of us for the computer 
to report suspicious transactions in a form that 
does not require it to have a conversation with us 
that would fool us into thinking it was a person!

Believers in weak AI claim that computers 
can be built with thinking-like abilities.  This 
is the kind of artificial intelligence we are 
concerned with: the ability of the computer to 
adapt to new circumstances and to detect and 
extrapolate patterns, that is, to learn.  The claims 
of believers in weak AI that computers can learn 
in this sense have already been proven correct.
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(continued on page 4)

detection, it too faces most of the same problems.  
The general framework for the understanding 

of machine learning approaches immediately 
following this section lays out the issues.  
Separate sections on decision trees, neural 
networks, and statistical profiling will outline 
how each of these approaches handle the issues.   

A General Framework for 
Understanding Machine Learning 
Approaches

Specification of a Well-Defined Learning 
Problem

We will define learning as improvement of 
performance with experience, or, more formally:

Learning:  A software system learns from 
experience if it is able to improve its performance 
on a task with experience in performing the task, 
without outside intervention.

In the example of the car that learned to drive on 
the highway by itself, the steering system and vision 
sensors of the car started out knowing nothing.  
Through exposure to a variety of driving scenarios 
represented by visual stimuli and feedback on 
the correct actions to take given those scenarios, 
the system eventually trained itself to steer so 
that it could successfully drive on the highway.

An anti-money laundering learning task could 
be expressed in this framework as follows:

Task:  Recognizing cases of money laundering;
Performance:  Percentage of successfully 
classified cases; and
Experience:  Exposure to a set of cases with 
the cases that constitute money laundering pre-
identified.

The idea is that having learned how to classify 
the pre-identified cases, the software system can 
correctly classify not only cases that are identical 
to those it has been exposed to, but also cases 
that are different.  A key point is that the software 

system is not simply memorizing the specific cases 
that it has been presented.  Rather, it is developing 
a method by which to classify future cases.

Before going further, we’ll refine the 
specification of the task.  A correct task 
specification is one of the keys to successful 
machine learning.  It’s unrealistic to expect that 
the computer is going to definitively recognize 
cases of money laundering.  There are too many 
factors that could never be included in the data to 
make a definitive identification.  Instead, we could 
define the task as identifying cases in which a 
Suspicious Activity Report (SAR) should be filed.  
Even this is too ambitious.  We can’t expect to have 
so much confidence in our program that we will 
allow it to automatically file a SAR without human 
intervention.  A more realistic goal is recognizing 
cases in which an expert would say that the 
institution’s policy would require that someone 
should investigate whether a SAR should be filed.  
(In fact, many of the software systems reverse 
their viewpoint on the problem and, rather than 
learning to recognize the case of suspected money 
laundering, they learn to recognize normal patterns 
of activity; then they report on departures from those 
normal patterns.  We will discuss the advantages of 
this after illustrating how decision trees and neural 
networks solve the learning problem.)  Meanwhile, 
our new specification of the Task is to recognize 
whether a transaction should be investigated.

We will consider a number of important 
issues involved in building software that 
could successfully learn the task.  The first 
set of issues involves the organization of the 
experience that the software will train itself on.
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Design of The Training Experience:  Variables, 
Data Items, and Choice of Sample Data

The organization of the training experience 
involves the choice of the data that will be available 
to the software.  The choice of which data items to 
include in the training experience is perhaps the 
most important choice of all.  The data items that are 
chosen as predictors in the training experience can 
be called the independent variables; the predicted 
classification can be called the dependent variable.  
In our examples, Investigate? will be the dependent 
variable.  We will call Investigate? = Yes a positive 
result and Investigate? = No a negative result.

The term “predict” may seem odd in this 
context.  It is generally used in discussing the 
application of machine learning techniques to 
time-series data.  The idea is that we are trying 

to predict a future outcome, such as, whether a 
patient will later recover from pneumonia, or, in 
our example, whether a transaction would later 
be classified as Investigate? = Yes by an expert. 

If the independent data items we choose 
for analysis are not sufficiently related to the 
dependent classification variable, the software has 
no chance of being able to learn to successfully 
classify any cases beyond those presented in 
the training experience.  Taking an extremely 
obvious example, if the only data items we 
included as independent variables in the training 
data were name, address, date of deposit, and 
account type, the program would be unable to 
generalize beyond the training experience.  Some 
of the data items that might be used as indpendent 
variables are shown in the shaded box below.

One strength of machine learning is that if you 

Selection of Data Items to Use as Indpendent Variables is Critical

A few of the independent variables related to the account would be:
 •  Account Type (personal vs. corporate, savings vs. checking, type of checking or savings); 
 •  Account Holder Entity Type (individual personal account vs. joint personal account vs. 
     business, and type of business); 
•  Account relationships with other accounts; 
•  Stated expectations of account usage; 
•  Account location, with risk rating of geographical region of account holder and related accounts
     including habitual counter-parties;
•  Periodic and current account balances.

A few of the independent variables related to individual transactions would be:
• Transaction Date, Time, and Amount; 
• Transaction Type (deposit vs. withdrawal, monetary vs. non-monetary, teller vs. non-teller,
     purchase or deposit of negotiable instrument with instrument type, wire transfer with to and
     from locations); 
•  Comparison with frequency and volume of transaction types over specified periods (days, 
    months, years);
•  Calculated comparisons to normal transactions;
•  Calculated comparison to normal and current account balances;
•  Words used in comments or description fields, sometimes given a risk rating.
In addition to using these and other independent variables relative to accounts and transactions 

at the individual account level, most of the systems would also compare transactions made by peer 
groups of similar accounts. 
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include a large number of independent variables 
some of which may have no relationship to the 
dependent variable and others of which have 
complex relationships to the dependent variable, 
machine learning approaches can learn to predict 
the correct classification based on complex 
relationships that might not be obvious to people.  

The selection of data items to include is one 
of the areas in which domain expertise comes 
into play.  Domain experts can examine the data 
items selected to at least make sure that nothing 
they think might be relevant is left out.  In the real 
world, data for money laundering software comes 
from multiple sources.  The issues surrounding 
what data items are selected, and the formats and 
timeframes in which they are made available to the 
software are critical both in the system’s knowledge 
discovery capacity and its ongoing operational 
detection of money laundering transactions in 
production.  The issues involved in making the 
data formats consistent and providing things like 
universal account and transaction numbers that will 
be unique across all the systems are the same issues 
that would be involved in a data warehouse project.

The sample data items that we’ll use in 
our examples are in the shaded box below. 

It’s important to avoid choosing independent 
variables that have a direct but non-predictive 

relationship to the dependent variable.  Taking an 
extreme example, if we made universal, unique 
transaction identification number an independent 
variable, the computer could easily develop an 
algorithm to correctly predict all the outcomes for 
the cases in the training data set, but it would have 
no ability to predict any outcomes for cases not in 
the training data set.  Much less obvious examples 
of this occur frequently when choosing variables 
from production data, since the meaning of a data 
item is not always clear.  One symptom of this 
kind of problem is results that are too good on the 
training data set but poor on any other set of data. 

We’ve chosen these four calculated variables 
so that our examples can have some meaning with 
just a few variables.  In a real-life situation it is 
highly advisable to insure access to data at the most 
granular level possible (as in any data warehouse 
project). Data can always be summarized; 
summarized data generally can’t be decomposed 
back into its more granular form, and that granular 
form might be desirable at some point, either 
on its own or to perform a different summary.

In addition to the choice of data items, the design 
of the training data set also involves the choice of 
sample cases.  We are all familiar with the notion of 
random sampling.  In this case, random sampling is 
generally not appropriate.  A random sample would 

Independent Variables for Use in Examples 

We’ll use a sample training data set with just 4 independent variables for purposes of illustration 
in this article.  Variable names will appear in the font shown below.  The variables we chose are:

•  Geo Risk, which will be a Risk Rating of the Country of the Account Holder; 
•  Trans Amt/Bal, will be based on the Transaction Amount relative to Average Individual
     Account Balance over the last six months;
•  Relative Peer Trans Amt/Bal, which will be based on the (Transaction Amount) relative to
     (Average Individual Account Balance over the last six months) compared to an analogous
     Peer Group measure of (Average Transaction Amount for this month for the Peer Group)
     relative to (Average Account Balance over the last six months for the Peer Group); and
•  Relative Peer Trans Freq, which will be based on the (Transaction Frequency for the past
    30 days of the Account that made the Transaction) relative to the (Transaction Frequency for
    the past 30 days of the Accounts in the Peer group).



6 Transaction Monitoring Under the Hood

show an overwhelming majority of negatives 
(Investigate? = No) and very few positives.  In a data 
set where Investigate = No was the outcome 97% 
of the time, any methodology would achieve 97% 
accuracy merely by predicting that Investigate? is 
always No.  In order to learn to identify the positives, 
the training data set will very likely have to contain 
a higher proportion of positives than we would find 
in a random sample.  (Even if the software was 
taking the opposite approach of identifying the 
normal transactions and reporting on exceptions, 
the sample would have to be skewed towards 
exceptions in order to learn to distinguish normal 
from abnormal, unless it purely took the approach 
of reporting all departures from normality.)

Search Space and Valid Hypothesis Space

In computer science, developing an algorithm 
for predicting a result is often viewed as a search 
through a set of hypotheses to find the hypothesis that 
most accurately predicts the result.  We will adopt 
the following restricted definition of Hypothesis:

Hypothesis:  A statement or set of statements 
that predicts one or more dependent variables 
based on the values of a set of independent 
variables.

We will enclose hypohtheses in curly braces 
to set them off, for example: {If Geo Risk = High, 
Investigate = Yes}.

We will define a Case as follows:

Case:  Given a set of independent variables, a 
case is a particular set of values for each of the 
independent variables.  For example, taking Geo 

Risk, Trans Amt/Bal, Relative Peer Trans Amt/Bal, and 
Relative Peer Trans Freq as the set of independent 
variables, (Geo Risk=High, Trans Amt/Bal=Normal, 
Relative Peer Trans Amt/Bal=Low, and Relative Peer 
Trans Freq=Normal) would be a case.  Case is 
synonymous with the mathematical term, vector.

The total set of hypotheses is called the 
Search Space, which we will define as follows:

 
Search Space:  The complete set of possible 
hypotheses that can be constructed to predict 
a dependent variable for the set of all possible 
cases, given a set of independent variables.

 Within the total set of hypotheses, and 
also within the set of hypotheses for a particular 
search algorithm, there will generally be more 
than one hypothesis that predicts the outcomes 
in the data with equal degrees of success.  For 
the purposes of this article, we’ll define this set 
of hypotheses as the Valid Hypothesis Space:

Valid Hypothesis Space:  The set of hypotheses 
in the search space in which all the hypotheses 
that are members of the set are consistent with 
a given set of cases to a degree greater than or 
equal to a specified level of accuracy.

In the decision tree section of this article, the 
four independent variables described above will be 
coded as having 2 values for Geo Risk and 3 each 
for Trans Amt/Bal, Relative Peer Trans Amt/Bal, and 
Relative Peer Frequency.  Table 1 shows an example 
training data set consisting of only four cases.

Based on this very small set of cases, the 
Valid Hypothesis Space would be very large.  One 
valid hypothesis would be:  {If any value is High, 

Geo Risk Trans Amt/Bal
Relative Peer Trans 

Amt/Bal
Relative Peer 

Trans Freq Investigate?
1 High High Low Normal Yes
2 Normal Normal Normal Normal No
3 High Normal Normal Normal Yes
4 Normal Low High High Yes

Table 1:  Very small example training data set
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Investigate = Yes}.  Another would be:  {If any two 
values are High, Investigate = Yes}.  This illustrates 
that there will frequently be a more specific and 
a more general version of a valid hypothesis.  
Another would be:  {If Geo Risk is High, Investigate 
= Yes}.  Another would be:  {If Geo Risk is High 
AND NOT Trans Amt/Bal = High, Investigate = 
Yes}.  Another hypothesis that would be consistent 
with the data presented is:  {If at least one of the 
values is Low, Investigate = Yes}.  As humans, we 
can instantly see that this last hypothesis, while it 
is consistent with the data, would have very poor 
predictive value for cases outside of the training 
data set.  Our example seems trivial because there 
are so few cases, and, in general, the more cases in 
the training data set, the more likely that the set of 
consistent hypotheses will be predictive for a larger 
universe of cases.  But there will almost always be 
a number of hypotheses consistent with the set of 
cases (and therefore in the valid hypothesis space), 
even when the training data set is very large. 

Limiting the search space is important because, 
as shown above, the ways of combining the 
cases for even a simple set variables is extremely 
large.  With the small set of variables and values 
specified above, the set of possible cases is only 
2 * 3 * 3 * 3, or 18.  However, the number of all 
the ways to combine the hypotheses that cover 
these cases is much larger.  Mathematically, the 
number of ways of combining all the hypotheses 
that use propositional Boolean logic (as decision 
trees implicitly do) would be called the set of 
all the subsets of the cases, also known as the 
power set.  The number of members in the power 
set of a set of cases can be calculated as 2(number of 

cases).   In this example, that is 218 which is 262,144.  
And, if you expand the ways of constructing 
hypotheses to include assigning real number 
weightings to the independent variables, as neural 
networks do, and expand the set of independent 
variables to a more realistic number, the set of 
possible combinations becomes impossibly large 
to consider and still maintain computability, 
even with the speed of today’s computers.

The set of hypotheses within the search space 
that the computer can consider is limited by the 

approach that the computer uses to solve the 
problem.  The constraints that decision trees, neural 
networks, and statistical profiling provide the limits 
required to keep the search space manageable; 
the particular ways in which they limit the search 
space is one of the things that differentiates them.

Overfitting the Training Data Set

A hypothesis (A) overfits the data when there 
is a hypothesis (B) in the valid hypothesis space 
that performs better on a larger set of data, even 
though hypothesis (B) does not fit the training data 
as well hypothesis (A).  Hypothesis (A) is learning 
the training data too well, mistaking the training 
data set for the real data.  This can happen for a 
number of reasons.  One reason is that there are 
coincidental relationships in the training data that 
do not hold up in the larger data set.  For example, 
if we had made currency an independent variable, 
and there was one transaction in Greek Drachmas 
in the training data set that was pre-identified 
as suspicious, the hypothesis that all Drachma 
transactions should be tagged as suspicious would 
be in the valid hypothesis space for the training data 
set.  Without that hypothesis, it is possible that no 
other hypothesis in the valid hypothesis space would 
predict that the Drachma transaction would be 
suspicious (assuming the specified level of accuracy 
for the valid hypothesis space is less that 100%, as 
it might have to be if the factors that made the 
Drachma transaction suspicious were not included 
in the training data set as independent variables).

In the training data set above, it was obviously 
a coincidence that both of the cases that had values 
of Low and Normal for at least one of the variables 
were positive.  Eliminating the hypothesis that 
Investigate = Yes for any transaction if Low and 
Normal are included as two of the values of 
independent variables would not reduce the 
predictive accuracy of the valid hypothesis set for 
the training data set.  But it would almost certainly 
increase the accuracy of the valid hypothesis 
set on cases outside of the training data set.

In the larger data set we are imagining as part 
of this example, we will now postulate that it is also 
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a coincidence that any case that has a value of High 
for Geo Risk is positive.  If we looked at more cases 
in which Geo Risk is High, without any other factor 
leading to Investigate = Yes, Investigate would be 
No.  How could that be true?  One way it could be 
true would be if there were factors that were not 
included in the analysis as independent variables, 
as with the Drachma transaction above.  Without 
some of those factors indicating a suspicious 
transaction, Geo Risk alone would not lead to a 
positive outcome.  It happens that in the case in 
the training data set, these unseen factors were 
positive so the case was correctly classified as 
positive, but in other cases, those factors are not 
always positive.  If that were true, the hypothesis: 
{If Geo Risk is High, Investigate? = Yes} would 
increase the rate of successful predictions for the 
training data set, but decrease it for real data.

The graph in Figure 1 illustrates the effect of 
overfitting.  The accuracy of the model generated 
during the first part of the training rises rapidly, 
almost as rapidly on the test data as on the training 
data.  At some point, as the model is trained to 
fit more and more accurately to the training data, 
its accuracy when applied to the test data starts 
to decrease.  The optimal model is the one that 

reaches maximum accuracy on the test data.
 Notice the use of the words “test data” rather 

than “real data”.  Almost all the approaches to the 
problem of overfitting involve developing a model 
on a training data set, and then testing that model 
on other sets of data to determine the point at which 
overfitting becomes a problem.  A very frequent 
approach is to divide the initial sample into three 
independent data sets: a training data set, a test 
data set, and an evaluation data set.  The evaluation 
data set is used to once again test the accuracy 
of the model after the effects of overfitting have 
been identified and reduced using the test data set.

 Overfitting is related to another problem.  
Each of these approaches may find a locally optimal 
solution that is not globally optimal, that is, the first 
solution they find as a result of where they start 
their evaluation and their underlying assumptions 
may not be the best solution they could achieve.  
Even within an approach (decision tree, neural 
network, or statistical profiling), the model that the 
computer arrives at by traversing the hypothesis 
space in a particular way might be better than the 
other ones that the computer evaluated, but might 
not be better than some others that the computer 
has not evaluated.  This is discussed for each 
approach in the section that covers that approach.

Noisy Data and Missing Values

Another source of inaccuracy in the model 
generated on the training data set is noisy data.  In the 
real world, data contains errors and inconsistencies.  
If there are errors and inconsistencies in the 
training data set, the model learns from the 
disinformation they provide.  Generally, the same 
techniques used to combat overfitting also work to 
reduce the impact of noisy data.  Some approaches 
are very vulnerable to the effects of noisy data.  
However, for decision trees, neural networks, and 
statistical profiling, there are effective methods 
of dealing with noisy data in the training data set.

Sometimes values are missing in some 
cases either in the training data set, test data 
set, evaluation data set, or during actual system 
operation.  Common methods for dealing with Figure 1:  Effect of Overfitting
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this situation are to ignore the case, to assign a 
default value of the independent variable, or to 
assign a probability to each of the possible values 
rather than simply assigning a default.  When a 
system assigns a default it frequently uses some 
criteria of similarity to other cases to decide 
what default to assign.  While ignoring a case 
may work during the learning process, it is not a 
good alternative during system operation, since 
it would risk skipping over a potential money 
laundering transaction, and in some cases, such 
as a case in which a work telephone number is 
missing, the very fact that the data is missing could 
contribute to flagging a transaction as suspicious. 

Value Weighting Outcomes

There are frequently situations in which it is 
more important to accurately predict one outcome 
or classification than another.  In the detection of 
money laundering, as in cancer screening, a false 
negative is a bigger problem than a false positive.  
Further investigation exposes a false positive.  
A false negative is not investigated further, and 
the costs can be very high.  Of course, there is 
a balance.  If the level of false positives gets 
too highg, it creates an insupportable burden on 
the investigators.  Still, it is desirable in money 
laundering detection to err on the side of caution.

One obvious technique for favoring false 
positives over false negatives is simply to lower 
the threshold for reporting of positives.  However, 
more sophisticated techniques can actively 
incorporate value weighting outcomes at each 
step in the process, which may result not just in a 
lower threshold, but actually in a different model.

Decision Trees

Decision trees are one popular, effective 
approach to classification and prediction problems.  
Decision trees have been used successfully to 
detect fraud, to identify borrowers who will declare 
bankruptcy in the next 12 months, to predict which 
molecular structures will be effective against the 

HIV virus, and to predict the crashworthiness of 
potential new automobile designs.  A decision tree 
works like a game of Twenty Questions.  In Twenty 
Questions, one person thinks of something and the 
other players are allowed to ask a series of questions 
to guess what the person is thinking of.  The goal of 
the game is to be able to guess what the person is 
thinking of with the minimum number of questions.  

For the decision tree, the allowable set 
of questions is limited to the independent 
variables.  What the algorithm is looking for 
is the ideal order in which to test the variables.  

To illustrate the decision tree approach, we’ll 
code the values of the independent variables specified 
in the General Framework section above as follows:

• Geo Risk will have 2 possible values:
     High or Low;
• Trans Amt/Bal which will have 3 possible
     values: High, Normal, and Low;
• Relative Peer Trans Amt/Bal will have 3
     possible values: High, Normal, and Low;
        and
• Relative Peer Trans Freq have 3 possible
    values: High, Normal, and Low.

Figure 2, on the next page, represents a 
decision tree based on these independent variables.

Decision trees start at a root node, usually 
drawn at the top.  In Figure 2, the root node for 
classifying a transaction is Relative Peer Trans 
Amt/Bal.   The transaction is then followed down 
the tree through the child nodes corresponding 
to the values of its attributes.  Just as in Twenty 
Questions, the independent variable to examine 
at each child node depends on the variable that 
comes before it.  A case is classified by moving 
down a tree branch until you reach the end of the 
branch (called a leaf node).  In Figure 2, the left-

(continued on page 10)
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most branch has already reached a leaf node.  If a 
case has a high Relative Peer Trans Amt/Bal, the next 
independent variable to test is Relative Peer Trans 
Freq.  If that is also high, this tree will classify the 
case based on just those two independent variables 
as Investigate? = Yes.  In other words, no matter 
what the values of the other two independent 
variables are, the transaction will be investigated.

 If a case has a low Relative Peer Trans Amt/
Bal, the next independent variable to test is Geo 
Risk.  If Geo Risk is high, the tree will proceed to 
the next independent variable, since it has not 
yet determined the classification based on those 
two answers by themselves.  It will continue to 
follow down the branch until it either reaches 
a leaf node with an Investigate? value or until 
it exhausts the independent variables without 
having reached a leaf node with a determinate 
value.  A leaf node with an indeterminate value 
indicates that the training data set does not contain 
enough information to classify the combination of 
values of the independent variables represented 
in the branch definitively as positive or negative.

Notice that the variables have been coded 
as discrete, non-continuous values.  This is a 
requirement of the decision tree approach, because 
the decision at each node must be a decision 

between one mutually exclusive classification and 
another.  We’ve taken the standard approach for 
implementing decision trees based on values that 
are continuous, namely, dividing the continuous 
values into ranges, such as High, Normal, and Low.  
There will inevitably be a loss of information, 
which may impact the efficacy of the model.  The 
values can be divided into narrower categories, but 
the finer the division, the more complex will be 
the resulting decision tree, which defeats the goal 
of making the decision tree simple.  This is one of 
the trade-offs built into the use of decision trees, 
although some advanced implementations have 
sophisticated methods for handling continuous 
values that minimize the impact of this problem.

Splitting and Independent Variable Test 
Order Criteria

 One of the most important differentiations 
among  alternative decision tree algorithms is the 
function they use to select the order in which to 
place each of the independent variables in each of 
the tree branches.  Many different decision trees 
are members of the valid hypothesis space.  The 
principle that the basic decision tree approach 
generally uses to choose between these trees is 

Figure 2: Top levels of a decision tree for determining the value of Investigate? 
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the same principle that determines who wins in 
Twenty Questions; the tree with the fewest nodes 
(that is, the simplest tree, corresponding to the 
fewest questions in Twenty Questions) is judged 
by the decision tree generation algorithm to be 
the best predictor of outcomes.  The choice of the 
ordering and splitting principle is generally geared 
to produce the simplest possible tree.  (This method 
of searching the hypothesis space is known as a 
greedy search, as opposed other types of searches 
such as breadth-first or depth-first, because it tries 
to get the most right answers as quickly as it can.)

The choice of the simplest tree as the best 
is based on an assumption associated with the 
philosophical principle of Occam’s razor, much 
used in philosophy and science since 1320, when 
William of Occam formulated it.  Occam’s razor 
postulates that the simplest hypothesis that fits a set 
of data is the best.  In practice, Occam’s razor is 
often, but not always, correct.  When it is incorrect, 
the decision tree approach will not choose the 
optimal decision tree from the set of possible 
decision trees.  There are a number of remedies 
for this, including generating trees with different 
splitting functions and testing the resulting trees 
on the test data to see which performs the best.

The aim of the splitting function is to select 
the independent variable that is most useful for 

splitting the cases at each node.  The root node 
should test the independent variable that most 
effectively splits the outcomes.  Each child of 
the root should test the independent variable that 
most effectively splits the remaining cases, and 
so on.  One function sometimes used to make 
this determination is based on the information 
theory measure called entropy, which is the 
result of a mathematical function to measure 
the extent to which the groups are homogeneous 
after a split.  The remaining independent variables 
are tested at each node and the one that results 
in the most homogeneous groups is selected 
until the group has a completely homogeneous 
value of Investigate?= Yes or Investigate? = 
No, at which point it becomes a leaf node.

One of the most widely employed decision tree 
algorithms is called CART (Classification And 
Regression Trees).  CART produces binary trees 
(that is, trees that only allow two classifications 
at each split, like the version of Twenty Questions 
in which only yes or no questions are allowed).  
CART originally used a splitting function quite 
similar to entropy called Gini, named after the 
Italian economist who invented it.  A different 
algorithm that can also be used with CART is 
called “Twoing” which produces trees that may 
be more balanced than trees produced using 

Figure 3:  Decision Trees based on different splitting algorithms
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Gini or entropy as the split ordering function.  
For example, say we’re trying to predict 

which of 200 brands of cereal that a consumer 
is most likely to buy.  On the left in Figure 
3, on the previous page, is a decision tree 
based on a Gini algorithm, on the right a 
decision tree based on a Twoing algorithm.

Figure 3 also illustrates a possible alternative 
principle for preferring one decision tree over 
another.  Assuming that the two trees in Figure 
3 are both members of the valid hypothesis 
space with similar degrees of accuracy, the tree 
based on twoing might be preferred because 
its discriminations are much easier for people 
to understand.  The more powerful decision 
tree packages provide a choice of splitting 
function.  You can experiment with different 
splitting functions and decide which produces 
the result that is most useful for your purpose.

Generating Rules from Trees

One major appeal of the decision tree approach 
is that there is a virtually direct translation from 
the decision tree to rules that can be understood, 
evaluated, and applied by humans.  A rule 
produced by the tree shown in Figure 2 would read:

{If Relative Peer Trans Amt/Bal = High AND 
Relative Peer Trans Freq = High THEN Investigate? 
= Yes.}

Dealing with Overfitting

There are two approaches to deal with 
overfitting of decision trees:

•  stop growing the tree at some point; and 
•  post-pruning the tree.

Post-pruning the tree is more effective in 
practice because it’s too hard to decide when to 
stop growing the tree without building the entire 
tree.  The decision tree generated while training 
on the training data set will normally be post-
pruned after it is applied to the test data.  An error-

reduction formula can be applied at each node to 
determine if that node improves the accuracy of the 
tree on the test set.  Each branch of the tree will be 
pruned back from leaf nodes to the point at which 
the error rate for the test data starts to rise.  This will 
prune the tree back to a point that approximates the 
optimal amount of training, illustrated in Figure 
1 in the General Framework section, above.

 As the tree is pruned back from the leaves, 
the purity of the outcomes will be reduced.  The 
leaves were reached through a series of nodes that 
progressively worked their way down to the most 
homogeneous set of outcomes (either all positive 
or all negative).  When the tree is pruned, the 
new leaves will have a mixture of positive and 
negative outcomes.  At that point, the probability 
of a positive or negative outcome at that leaf 
node can be calculated based on the proportion 
of positive and negative outcomes.  As is always 
the case with the outcomes of neural networks and 
statistical profiling, a threshold can then be set.  
Above a certain level of probability of a positive 
outcome, the outcome will be given a value of 
Investigate = Yes, possibly with an indication 
of the degree of certainty of the classification.

Another technique involves translating the 
entire tree to a set of rules and then pruning the rules 
rather than the tree.  One advantage of this technique 
is that it allows pruning nodes in the middle of a 
branch, removing the limitation that a branch can 
only be trimmed back from the leaf node.  Another 
is that improves the readability of the rules that can 
be derived from the tree.  Once the rules have been 
derived, they can be tested individually and the 
order in which the rules are tested in the operational 
system can be tweaked to improve efficiency.

Summary of Strengths and Weaknesses of 
Decision Trees

The natural strengths of decision trees include:
•  direct translation of models to
    understandable rules;
•  good performance when the problem
   domain lends itself to rules based on the
   data items after they have been classified
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   into mutually exclusive values;
•  easy handling of categorical variables
    with more than a single category, which
    pose problems for neural networks and
    statistical techniques; and
•  good performance.

The natural weaknesses of decision trees 
include: 

•  difficulty of classifying continuous
    variables into discrete, mutually exclusive
    categories without information loss;
•  poor performance when the problem
   domain does not lend itself to rules based
   on the data items after they have been
   classified into mutually exclusive values;
   and
•  difficulty determining the best tree to use
    when that tree is not the smallest tree.

As with each of these approaches, the 
effectiveness of decision trees is heavily 
dependent on how you implement them, on what 

data you use and how you formulate that data 
for the decision tree’s use, and on which of the 
variations of the approach you choose.  The only 
definitive measure of effectiveness is testing on 
real data, and even then, the effectiveness will vary 
depending on the data you use as your test sample.

Neural Networks

 A psychologist and a logician came up with 
the original artificial neural networks in the 1940s 
as part of an attempt to understand how the brain 
works.  They observed that the brain is comprised 
of a very complicated interconnected network of 
brain cells.  Emulating this structure, they designed 
a computer model consisting of a complex, 
interconnected network of independent computing 
units, each with a similar construction.  Figure 
4 is a graphical representation of a hypothetical 
neural network for predicting the probability of 
Investigate? = Yes from our four independent variables.  

Figure 4:  A neural network for predicting the probability of Investigate? = Yes
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Each of the input variables is fed into one of the 
units in the input layer.  The input layer unit processes 
the input and produces a single output.  That output 
is passed on to each of the units in a second layer of 
units, called the hidden layer.  The connection of the 
input layer units to each of the units in the hidden 
layer gives the network the power and flexibility to 
represent very complex relationships among the 
input variables.  The units in the hidden layer are  
each connected to an output unit, which combines 
the values they produce into a single value, in our 
example, the probability that Investigate? = Yes.

 The independent units in the classical form 
of neural network are called Perceptrons.  The 
structure of each of the perceptrons is similar.  In 
the original model, each perceptron would output a 
0 or a 1.  Perceptrons would determine whether to 
output a 0 or a 1 based on comparing the weighted 
sum of its input values to a threshold level.  The 
biological analogy is that a neuron in the brain fires, 
if, and only if, it is sufficiently stimulated.  When 
it fires, it sends an impulse through its dendrites 
and synapses to other neurons.  Perceptrons 

split their computation into two components, 
a combination function and a transformation 
function.  The combination function is generally 
some form of weighted sum of the inputs, with 
a separate weight assigned to each input.  For 
our example, this would be expressed as follows:

 = 
1
(Geo Risk) + 

2
(Trans Amt/Bal) +

      
3
(Relative Peer Freq) +

      
4
(Relative Peer Trans Amt/Bal)

where  is the result of the combination function 
and 

1 
-

 


4 
are the weights that the perceptron 

assigns to each of the inputs.  
In the original model, this result would be 

compared to a threshold value to produce a 0 or a 
1.  In a neural network with one hidden layer, each 
perceptron in the hidden layer would output a 0 or a 
1 to the output perceptron.  The weights assigned to 
the inputs of each of the perceptrons in the hidden 
layer are independent of each other.  The output 
perceptron would, in turn, apply its combination 

Figure 5:  A perceptron, the independent unit in a neural network
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function to the inputs from each of the perceptrons 
in the hidden layer and then apply its transformation 
function to determine whether to output a 0 or 
a 1, which, in our example, would correspond 
to Investigate? = No or Investigate? = Yes.  The 
structure of a perceptron is illustrated in Figure 5.

During the training process, the neural network 
modifies the weights assigned to each of the inputs 
of each of the perceptrons until the network can 
successfully predict the outcomes of the cases in 
the training data set.  Looking at the model of the 
neural network shown in Figure 4, you can see that 
being able to adjust the weight of each input to each 
perceptron allows neural networks to model very 
complex relationships among the input variables.

Backpropagation

Work on neural networks stalled in the 1970s 
because the most powerful computers generally 
available at that time were inadequate for supporting 
neural network analysis of real world problems and 
because two MIT professors published a paper 
showing that the original neural network model had 
theoretical problems.  The development of neural 
networks picked up momentum again in the 1980s 
as a result of two developments: John Hopfield 
invented backpropagation, which addressed the 
theoretical problems, and computers became much 
more powerful.  Since then, neural networks have 
been widely employed in the commercial world.  

The basic steps in backpropagation are:
• the output for a case is calculated based on
    the existing weights in the system;
• the discrepancy between the output and the
    expected result is calculated;
• each unit is assigned a share of
    responsibility for the error, starting by
    assigning the entire error to the output
    perceptron, which then assigns a share of
    responsibility to each of the perceptrons
    in the hidden layer using mathematical
    procedures such as taking partial derivatives
    of the transformation functions; and 
• the weights are nudged in a direction that
    would lessen the discrepancy in proportion

    to their share of responsibility for the error.
  A factor called the learning rate controls 

how quickly the weights are changed.  This 
usually starts out large and decreases as accuracy 
improves.

The process of adjusting the weights 
involves measuring how sensitive the output of 
a perceptron is to changing the weight on each 
input, and whether changing the input would 
increase or decrease the discrepancy.  When the 
backpropagation algorithm changes the weights 
in a direction that will correct the discrepancy, it 
doesn’t adjust them to exactly predict the outcome, 
because the final set of weights needs to work for 
all of the cases in the training data set, and also 
because exactly fitting all the cases in the training 
data set increases the likelihood of overfitting.

Variations on Basic Neural Networks

There are a number of variations on the basic 
neural network approach.  Some neural networks 
are feed forward networks; others are recursive.  
In a feed forward network the links between the 
perceptrons are unidirectional.  Perceptrons in one 
layer link to the next layer; there are no links from 
a perceptron to another perceptron in its own layer 
or to a perceptron in a previous layer.  A recursive 
layer allows such links.  The brain is a recursive 
network.  The neural networks in commercial use 
are mostly the simpler feed forward networks. 

First Ever CAMS Certification Exam!
*Deadline to Apply is February 12th 
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There are also different choices for the 
transformation function that converts the output 
of the combination function in a perceptron 
into the perceptron’s output.  There are three 
common choices for the transformation 
function: linear, hyperbolic tangent, and 
sigmoid.  Figure 6 is a graphical representation 
of the difference between these functions.

The linear function is not generally used 
because it can only represent linear relationships.  
Both the sigmoid function and the exponent (tanh) 
function can represent non-linear relationships.  The 
main difference between them is that the exponent 
(tanh) function produces outcomes between –1 
and 1, while the sigmoid function produces values 
between 0 and 1.  The sigmoid function is by far 
the most commonly used transformation function.  
Usually the same transformation function is 
used in all of the perceptrons in a network. 

Up to now we have talked about output 
values being 0 or 1.  With the sigmoid function, 
the values are continuous between 0 and 1.  In 

order to produce a result of Investigate? = Yes or 
Investigate? = No, we need a threshold value.  This 
threshold value can be adjusted to produce greater 
sensitivity to Investigate? = Yes so that we don’t 
miss any positives.  (In addition, there are ways 
to incorporate value weighting of outcomes into 
the entire weight adjustment process.)  Having 
values between 0 and 1 is advantageous because 
it allows us to see where the cases are on a 
spectrum of very normal to very suspicious.  We 
would want to put a priority on investigating 
those transactions that are most suspicious.

There is also the option of having multiple 
hidden layers.  In practice, a single hidden layer 
is usually more than sufficient, and more hidden 
layers increase the danger of overfitting.  But for 
extremely complex domains more hidden layers may 
be useful.  One of the largest neural networks ever 
deployed,  AT&T’s network for reading numbers 
on checks, had seven layers with a combined 
total of hundreds of thousands of individual units.

 Backpropagation is the learning algorithm 
that got neural networks out of the theoretical 
slump of the 1970s, but, since the discovery of 
backpropagation, a number of other learning 
algorithms have been explored.  One, PRCE 
(Probabilistic Restricted Coulomb Energy), which 
has been used in both credit card fraud detection 
and money laundering detection, transforms the 
independent variables into features and builds a 
multi-dimensional feature matrix.  Features of two 
different classifications (such as Investigate? = Yes 
and Investigate? = No) can sometimes have an area 
of overlap.  For example, as Geo Risk goes from 
High to Low in a continuous spectrum of values, a 
greater proportion of Investigate? = Yes transactions 
have Geo Risk on the high end, although there are 
still many Investigate = No that have a Geo Risk on 
the low end.  During training, regions in the multi-
dimensional feature matrix are identified as being 
more or less likely to belong to one classification 
or another.  A probability density function is used 
to measure the probability that a transaction with 
a set of features that put it in a particular place in 
the matrix should be classified as Investigate = Yes.

 Genetic algorithms have also received 
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Figure 6:  Three Transformation Functions
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attention as a technique for neural network 
learning.  Genetic machine learning algorithms 
deploy competing neural networks and evolve 
them to see which survives as the fittest. 

Data Preparation: 0 to 1

 One characteristic of neural networks is that 
they have an affinity for input data that has been 
massaged so that all the values of all the input 
variables are in the range of 0 to 1.  One reason for 
this is that, since all of the perceptrons in a network 
have the same structure, and the outputs of some 
of the perceptrons are the input to others, it is 
desirable to have all of the values in the same form, 
which is 0 to 1, if you are using the most commonly 
used transformation function - the sigmoid 
function.  This is the neural network counterpart 
to the need to divide values into mutually 
exclusive categories for use with decision trees.

 Massaging all the inputs to be in the range 
of 0 to 1 for neural networks is as hard as dividing 
them into mutually exclusive categories for decision 
trees.  The most common technique for variables 
that have continuous values such as dollar amounts, 
averages, and ratios, is to predefine a range bounded 
by a minimum and a maximum value and define a 
value somewhat lower than the minimum as 0 and 
a value somewhat higher than the maximum as 
1.  Of course, the process of defining minimums 
and maximums is notoriously error-prone.  There 
are several techniques for handling variables that 
represent mutually exclusive categories (ordered 
mutually exclusive values such as numbers of 
children or age need to be handled differently than 
unordered values such as gender and status codes).  
Dates present another issue.  Of course, there are 
ways of handling all of this, but they are not without 
pain, and they introduce a potential source of error.

Overfitting and Premature Convergence on 
a Solution

 One of the algorithms used to avoid 
overfitting in neural networks is a technique called 

weight decay, which consists of decreasing the 
weights by a small amount in each iteration.  The 
effect of this is to keep the final weight values small, 
which militates against the selection of a complex, 
highly differentiated hypothesis, resulting in a 
neural network that is less likely to have been overfit 
to every nook and cranny of the training data set.

 The best technique to avoid overfitting for 
neural networks, as for all of the approaches, is 
the use of additional data sets after training on 
the training data set.  Use of a test data set and 
an evaluation data set, as described in earlier 
sections, is highly recommended.  Additionally, 
there are various methods of cross-validation 
using the same data partitioned in multiple ways.

 One problem faced by neural networks that 
is related to overfitting is that they sometimes 
converge prematurely on a less than optimal 
solution.  This is the problem of the local versus 
global optimal solution referred to in the General 
Framework section.  Unlike decision trees, neural 
networks generally start their search in a relatively 
arbitrary point in their overall hypothesis space.  
Their usual search algorithm is called a gradient 
descent search, as opposed to the greedy search 
algorithm used for most decision trees.  One way to 
visualize a gradient descent search is to think of a 
topographical model with hills, mountains, valleys, 
and crevices.  The lowest point in the topography 
represents the globally optimal solution.  The 
gradient descent search keeps trying to move in a 
downward direction to find the lowest point.  Once 
it can go no lower, it stops.  The problem is that it 
may be in a valley on one side of a mountain that 
has a much deeper canyon on the other side.  It 
won’t automatically proceed up the mountain to 
find the canyon.  A variant of the gradient descent 
search called a stochastic gradient descent search is 
designed to decrease this danger, but the best cure 
is, once again, to test against more data.  A solution 
that is locally but not globally optimal will not 
perform well on data outside the training data set. 

 Some vendors offer a facility to re-train the 
system that can be executed by the user with little 
vendor assistance. This is very valuable because if 
new patterns emerge in the data, re-training can 
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make the system significantly more accurate.  Of 
course, as is the case with any system, the system 
is only as good as its input variables.  If the change 
in patterns of activity involves data items that 
have not been selected for inclusion in the model, 
the vendor will need to be involved in adding 
these new independent variables.  The re-training 
only readjusts the weights of the independent 
variables that are already defined to the system.

The Black Box Bogey

The criticism of neural networks most 
frequently heard from vendors who don’t use them 
is that they are a black box; you don’t know why 
a transaction has been reported as suspicious.  It 
is true that you wouldn’t be able to understand the 
weights that have been assigned in each unit of 
the neural network even if you used the advanced 
technologies that are now available to know what 
the weights were.  The power of the network lies 
in the complexity of the interactions between the 
units and the processing of the weights by the  
non-linear mathematical functions.  But there are 
multiple techniques for identifying which of the 
inputs contributed most to the high probability 
assigned to a suspicious transaction.  The process 
of backpropagation itself relies on a measure of 
which weights in which units contributed most 
to the final verdict.  A related technique called 
sensitivity analysis can be used to find out which 
of the variables in the suspicious transaction the 
network was most sensitive to.  Mr. Bruce Fisher of 
ACI Worldwide, which uses PRCE as its learning 
algorithm, reports that ACI uses the probability 
density function mentioned earlier to assign three 
reason codes to a suspicious transaction.  These 
reason codes describe the characteristics that made 
the point in the multi-dimensional feature space 
occupied by the transaction suspicious.  If you know 
the three top reasons that a transaction was reported 
as suspicious, that gives you a good handle on what 
you should be looking at when you investigate it.

An additional issue related to the difficulty 
of understanding how a neural network works 
internally is that managers may want an explanation 
of how the system works to make a purchasing 

decision, and regulators (or, worse, courts) may 
want an explanation to justify its use.  To deal 
with this, the techniques for figuring out why the 
network has identified a particular transaction as 
suspicious can be used to analyze which factors 
the system is most sensitive to in general.  But 
the most powerful arguments for the use of neural 
networks are demonstrations of their effectiveness 
in identifying suspicious transactions, both 
those provided by the vendor, and, perhaps more 
importantly, those generated during benchmarking 
at your site during and after product evaluation.

Summary of Strengths and Weaknesses of 
Neural Networks

The natural strengths of neural networks 
include:

•  ability to handle complex relationships
    among variables (including non-linear 
    relationships) can result in a high degree of
    predictive accuracy;
•  natural handling of continuous variables;
    and
•  successful use in fraud detection, a domain
    that shares many  of the characteristics of
    money laundering detection.
The natural weaknesses of neural networks 

include: 
•  difficulty in understanding why the system
    identified a particular transaction as
    suspicious (mitigated by the ability to
    identify the most likely factors that led to
    the identification);
•  difficulty in understanding how the
    system generally arrives at its results and
    in explaining the internal workings of the
    system to managers and regulators
    (mitigated by the ability to identify which
    factors the system is most sensitive to and
    to cite track record statistics if the system
    is relatively very accurate);
•  difficulty of massaging input variables into
    the range of 0 to 1; and
•  possibility of converging prematurely on
    a solution that is locally but not globally
    optimal.
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If a neural network package were to turn 
out to be even slightly better at accurately 
identifying suspicious transactions as a result 
of its ability to represent complex relationships 
among the independent variables (not to say 
that it necessarily would be), that might more 
than make up for the difficulty in understanding 
its internal functioning.  Trade-off decisions 
such as this are endemic to these technologies.

Statistical Profiling

Statistical profiling is conceptually more 
familiar than decision tree or neural network 
approaches, given that we are not going to go into 
the mathematics of statistical analysis.  In order to 
evaluate a transaction, statistical profiling applies 
a statistical measure of variance to determine 
the extent to which the transaction deviates from 
previous transactions.  Variance can be measured 
for many variables.  A transaction can be evaluated 
based on a number of characteristics, such as, 
its absolute amount, its amount compared to the 
amounts of other transactions within a particular 
time period (daily, weekly, monthly), transaction 
frequency during the period the transaction is 
made, and relationships with counter-parties inside 
or even outside the institution.  A transaction can 
be evaluated against past patterns of behavior 
for the account that made the transaction, 
for the account and its related accounts, and 
for accounts in the account’s peer group.

Statistical profiling systems use various 
principles to determine an account’s peer group.  It 
is not unusual for a statistical profiling vendor to 
look to the institution at which it is implementing 
its package to define the groups based on account 
characteristics that the institution specifies as 
part of the configuration process.  Once the peer 
groups are specified, their behavior can change 
dynamically and variance will be measured based 
on the current behavior of the group.   Mr. Mark 
Kramer of NetEconomy makes the following 
analogy.  “If a flock of birds is flying together, 
and they all make a sharp turn, there is nothing 
unusual going on with the birds that are turning.  

What’s unusual and needs to be investigated is 
when one of the birds veers off from the flock, 
even by going straight when the rest of the birds 
turn.”  You would not be judged to be behaving 
in an unusual way if you went over your normal 
credit card balance at Christmas time.  In fact, 
since many retail businesses experience a surge of 
activity during the Christmas season, if an account 
holder claims their account is for a retail business, 
but it does not show any change in activity at 
Christmas, the lack of change may merit attention.

One issue with classical statistical techniques 
such as linear, logistic, quadratic functions 
is that they do not in and of themselves have 
ways of representing complex relationships 
among independent variables.  Vendors may 
have proprietary algorithms to use relationships 
between variables to come up with a final score that 
indicates the probability that a transaction should 
be classified as Investigate? = Yes or Investigate? = 
No by comparing the combined probability with 
a threshold level, but working with relationships 
among a large number of independent variables 
is not intrinsic to the statistical profiling approach, 
as it is to decision trees and neural networks.

Like decision trees and neural networks, 
statistical profiling can be used in conjunction 
with list checking and processing rules that flag 
transactions based on characteristics belonging 
to known patterns of money laundering.  This 
is important for recognizing patterns such as 
the opening of an individual account followed 
by a cash deposit just under the reporting limit 
followed by a wire transfer out of the account 
followed by a substantial period of inactivity.

Another issue with the statistical profiling 
approach is that there is no intrinsic way to flag 
out-of-pattern transactions as false positives.  
Some vendors offer facilities to address this.  For 
example, they may allow you to mark an account 
as a trusted account, exempting it from further 
testing, but that is a blunt instrument that could 
be dangerous.  Another approach would be to 
use the trusted flag to reduce the probability 
scoring of the transaction rather than exempt the 
account from checking altogether.  Some vendors 
also offer a facility for removing a suspicious 
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transaction that has been investigated and found 
to be legitimate from an account’s history so that 
it doesn’t skew the pattern that the system will 
compare transactions against in the future.  For 
example, when an individual purchases a home, 
you will want to remove the abnormally large cash 
transactions associated with the purchase from 
future statistical evaluation of the account’s history.

A strength of the statistical profiling approach is 
that it is part and parcel of the system that it profiles 
normal transactions and reports departures from 
the norm.  This approach naturally flags unusual 
transactions that could be part of new money 
laundering patterns, thus detecting new patterns 
that it hasn’t been programmed to recognize.  

As a result of using departure from the norm as 
its method of classifying transactions, overfitting 
takes on a somewhat different complexion with 
the statistical profiling approach.  Of course, in 
order to identify what to report, it has to have some 
internal way to separate normal transactions from 
abnormal transactions.  The contours of normal 
and abnormal transactions fit together like two 
irregularly shaped pieces in a jigsaw puzzle.  The 
system has to recognize the boundary between the 
two pieces to know which side of the boundary 
to put a transaction on.  In the case of statistical 
profiling systems, this would normally be the 
done through the process of configuration and 
benchmarking on what we have been calling a 
training data set.  Configuration involves choosing 
the independent variables to be tested, adjusting 
the statistical algorithms including their sensitivity 
levels, and setting up account groupings for peer 
group comparisons, among other things.  The 
configuration will then be tuned to detect the 
known instances of money laundering in the 
training data set with maximum accuracy (perhaps 
erring on the side of false positives rather than false 
negatives).  After this process is completed, the 
configuration will be tested against other data sets, 
analogous to the test data set and the evaluation 
data set, to ensure that the configuration is correct.

Of course, as with all of these approaches, 
if data items other than those chosen in the 
configuration process are significant either in 
existing or in new patterns of money laundering, the 
system will not be able to recognize the suspicious 
transactions on the basis of those variables.

Summary of Strengths and Weaknesses of 
Statistical Profiling

The natural strengths of statistical profiling 
include:

•  intuitive methodology that’s easy to
    understand and to explain to managers and
    regulators (in principle, though not at the
    level of the statistical formulas);
•  natural tendency to recognize new patterns
    of money laundering, since it flags anything
    that is outside of the norm;
•  ease of understanding why a transaction was
    identified as suspicious (unless it was
    flagged due to relationships between the
    independent variables, see below);
•  natural handling of continuous variables;
•  efficient execution, as the calculations
    required for statistical analysis are easily 
    processed by the computer; and
•  minimal need to re-code data during
    configuration compared to other approaches
    (although it will probably be necessary to
    identify groups of accounts and transaction
    types for peer group comparisons).
The natural weaknesses of statistical profiling 

include: 
•  ability to consider complex relationships
    between independent variables is not part of
    the basic approach, and therefore it
    must be incorporated to whatever extent
    possible using statistical algorithms that
    are generally proprietary, and are therefore
    no more understandable than the operation
    of neural networks; 
•  difficulty in handling categorical variables
    with more than a single category; and 
•  difficulty in configuring some items such as
    account groups and transaction types in
    order to produce the best possible results.

Conclusion   
 
 Transaction monitoring software can be a 

valuable part of your overall compliance strategy.  It 
provides the ability to analyze transactions as they 
occur by comparing their relevant characteristics 
to known money laundering patterns and to 
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historical patterns in the transaction account and 
accounts similar to the transaction account.  Partly 
as a result of computerization in all spheres of 
financial institutions’ operations, especially in 
larger institutions, huge volumes of transactions 
are executed every day, and even every minute.  
Humans unaided by computers are simply unable 
to sort through the resulting mountains of data. 

The sophisticated software approaches we 
discussed in this article – approaches that go 
beyond list checking and rules processing – help 
enable institutions to catch transactions that should 
be investigated.  In money laundering, as soon 
a scheme is recognized and becomes generally 
known, clever criminals invent new techniques.  
In this article, we’ve discussed how decision trees, 
neural networks, and statistical profiling can spot 
transactions that may be using one of these new 
techniques even though the technique had not yet 
been invented when the system was implemented.

Unfortunately, these systems are expensive, 
and even after you’ve decided that a system of this 
kind should be part of your overall strategy, it is 
not easy to determine which system would be most 
appropriate for your institution.  There are many 
factors to consider besides which approach a vendor 
uses to drive its core money laundering detection 
engine.  You need to consider how the package 
will integrate with the institution’s overall software 
architecture, how much effort it will take to install 
and configure, how the workflow component of 
the system fits in with your own workflow, and 
other factors outside the software itself, such as 
the support offered by the vendor and the vendor’s 
long-term financial stability.  Not to mention price.

Even the much narrower question of which of 
the three approaches we’ve discussed would be 
most appropriate is a hard one.  As we’ve seen, 
each of the approaches has natural strengths 
and weaknesses, but how the approach is 
implemented can be even more important than 
which approach it is.  That includes both how 
the approach is implemented in the package 
and how it is implemented at your institution.  

All of the packages are heavily dependent on 
configuration.  Which independent variables are 
chosen during the set up is particularly critical.  
Factors such as how data is massaged so that it can 
be processed by the system and how such things as 

peer groups of accounts are chosen are also very 
important.  Installation of most of these systems at 
each institution involves a process very much like 
the process of training and adjustment we described 
throughout the article for each of the approaches:

•  after the choice of independent variables
    and the initial configuration, the system
    is run against a training data set of cases
    comprised of the values of the independent
    variables and pre-identified correctly coded
    results;
•  the system is tuned so that it can correctly
    predict the results from the independent
    variables;
•  the system is run against other data
    sets to make sure it hasn’t over-learned
    the peculiarities of the training data (see
    discussion of overfitting in the body of the
    article).

Implementation of these steps is an art as much as 
it is a science.

The idea of a bake-off, during which you 
would benchmark each of the systems, is an 
intuitively appealing solution to the challenge of 
evaluation.  It’s a great solution, but, unfortunately, 
benchmarking itself is expensive for your 
institution, even if you could get multiple vendors 
to do the work on their end for little or no charge.  
The process of choosing independent variables, 
extracting the data, and massaging the data so that 
it is in a form the different packages will accept 
would be costly.  An additional problem is that the 
results may not be entirely clear-cut, since different 
technologies and configurations may work better 
on different data, and you would presumably be 
doing the benchmarking against one set of data. 

While your understanding of the technological 
approaches involved in these packages should only 
be one factor in a software selection decision of 
this magnitude, your informed opinion regarding 
the technology hopefully can play some role in 
your decision making process, help you talk about 
the decision with managers, regulators, vendors,  
and staff, and can also make you feel more 
comfortable with the decision you ultimately make.


